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Humans and neural networks show similar 
patterns of transfer and interference during 
continual learning
 

Eleanor Holton    1,2  , Lukas Braun    1,3, Jessica AF Thompson    1,  
Jan Grohn    1 & Christopher Summerfield    1

In artificial neural networks, acquiring new knowledge often interferes 
with existing knowledge. Here, although it is commonly claimed that 
humans overcome this challenge, we find surprisingly similar patterns 
of interference across both types of learner. When learning sequential 
rule-based tasks (A–B–A), both learners benefit more from prior knowledge 
when the tasks are similar—but as a result, they also exhibit greater 
interference when retested on task A. In networks, this arises from reusing 
previously learned representations, which accelerates new learning at the 
cost of overwriting prior knowledge. In humans, we also observe individual 
differences: one group (‘lumpers’) shows more interference alongside better 
transfer, while another (‘splitters’) avoids interference at the cost of worse 
transfer. These behavioural profiles are mirrored in neural networks trained 
in the rich (lumper) or lazy (splitter) regimes, encouraging overlapping or 
distinct representations respectively. Together, these findings reveal shared 
computational trade-offs between transferring knowledge and avoiding 
interference in humans and artificial neural networks.

Continual learning is the ability to acquire multiple tasks in succession. 
Learning tasks in sequence is challenging because new task acquisi-
tion may cause existing knowledge to be overwritten, a phenomenon 
called catastrophic interference. Artificial neural networks (ANNs) 
trained with gradient descent are particularly prone to catastrophic 
interference1–3. Their difficulties with continual learning are often coun-
terpointed with those of humans, who seem to be capable of accumulat-
ing and retaining knowledge across the lifespan. The computational 
basis of continual learning in humans is a topic of active investigation4–7, 
and a consensus has emerged that task learning in humans and linear 
ANNs may rely on fundamentally different mechanisms7. Here, we 
describe work that challenges this assumption.

Recent work has shown that catastrophic interference can be 
counterintuitively worse when successive tasks are more similar to 
each other8–10. When faced with similar tasks, ANNs tend to adapt 
existing representations, rather than forming new ones. This allows for 

better transfer (where learning one task accelerates learning of others), 
but existing representations are corrupted, provoking heightened 
interference. By contrast, when dissimilar tasks are encountered in 
succession, ANNs adopt a different strategy, which involves forming 
entirely new representations. This means that learning proceeds more 
slowly, but networks suffer less from interference8,10,11. In other words, 
higher catastrophic interference can be a cost that accompanies the 
benefits of transfer.

Although catastrophic forgetting in ANNs is often contrasted 
with successful continual learning in biological systems, there is good 
reason to believe they might rely on common principles of generaliza-
tion and interference. In psychology, the term ‘retroactive interference’ 
refers to the phenomenon where new learning interferes with previ-
ous knowledge, analogous to catastrophic interference12–20. Cases of 
retroactive interference, for example, in sequential recall tasks, have 
also been proposed to depend on task similarity20–25. To take an intuitive 
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Together, these results point to key parallels between the 
trade-offs governing transfer and interference in humans and ANNs 
in continual learning settings. In both learning systems, learners who 
benefit most from generalizing shared structure also demonstrate 
the highest costs of interference. This balance is influenced both by 
external variables such as task similarity and by differences in the initial 
learning strategies.

Results
Humans and twinned linear ANNs (collectively, ‘learners’) learned two 
successive tasks (task A followed by task B) and were then retested on 
task A (Fig. 1). Each task required learners to map six discrete inputs 
(plants) onto positions on a ring (locations on a planet) in two distinct 
contexts (the seasons of summer and winter; Fig. 1a). Within each of 
the two tasks, a consistent angle referred to as the ‘task rule’ defined 
the relationship between summer and winter locations for any plant. 
For example, within task A, each plant’s winter location might always 
be 120° clockwise from their summer location (rule A = 120°; Fig. 1b). 
Learners were always probed on a plant’s summer location first, and 
then its winter location after viewing feedback, allowing inference 
about the rule that linked the seasons. Notably, for one of the six stimuli, 
learners never received feedback on the winter location, allowing us 
to measure generalization of the rule within a task.

After completing task A, learners were trained on task B, where 
they learned to map a new set of six stimuli to their corresponding 
summer and winter locations on the ring. Participants received no 
indication that a new task had begun, aside from the fact that the task 
B stimuli were novel. Learners were divided into three groups, corre-
sponding to three levels of similarity between the rule in task A (rule 
A) and the rule in task B (rule B; Fig. 1c). Depending on the condition, 
rule B was either identical to rule A (Same), shifted by 30° (Near), or 
shifted by 180° (Far). For example, if the relationship between the 
seasons in task A was 120°, it remained 120° for the new task B stimuli 
in the Same group, shifted to either 90° or 150° in the Near group, and 
changed to 300° in the Far group. The rules themselves were matched 
across conditions (Supplementary Fig. 1). After training on task B, 
learners were retested on the locations of task A stimuli—this time 
receiving feedback only about their summer responses. This allowed 
us to investigate their performance of rule A at retest without feedback, 
by analysing winter responses.

Defining transfer and interference
In theory, learners could apply their knowledge of rule A to the novel 
stimuli in task B. This would manifest as using rule A to assign a winter 
location to a task B stimulus after receiving feedback about its summer 
location. Consequently, if learners apply prior knowledge, the more 
similar the task B rule, the better we expect initial performance on task 
B. Accordingly, we evaluate transfer in both humans and networks as 
the difference between the average winter accuracy for task A stimuli 
during their final presentation and the average winter accuracy for 
task B stimuli at their first presentation (Fig. 1d). Because we expect 
transfer to decrease with decreasing rule similarity, we expect the low-
est transfer in the Far group.

Conversely, we predicted that successful transfer would come at 
the cost of greater interference from the new task. If Near group par-
ticipants benefit more from transfer, this interference would manifest 
as greater use of rule B when retested on task A stimuli. Because no 
new rule learning occurs during retest, we could formally quantify 
interference as the probability of using rule B on return to task A. To 
measure this, we fit a mixture of von Mises distributions38 centred on 
rule A and rule B to learners’ rule responses (the offset between the 
winter response given, and the feedback for summer on the imme-
diately previous trial). Higher interference corresponds to a higher 
probability weight of responding with rule B during retest of task A 
(Fig. 1d). As such, we measure interference from rule B in the Near 

example, language learners will find it easier to learn Italian after learn-
ing a similar Romance language (for instance, French compared with 
Korean), but may begin misapplying Italian words in French as a result. 
In dual-task paradigms, where participants must perform two tasks 
simultaneously, it is well established that cross-task interference is 
higher for tasks with shared structure26,27, argued to be an intrinsic cost 
of sharing neural representations across tasks28–30. While these studies 
suggest there may be similar trade-offs occurring in humans too, as far 
as we are aware, no previous studies have systematically compared how 
patterns of catastrophic interference relate to transfer during continual 
learning in humans and ANNs.

Here, we directly compare humans and linear ANNs performing 
the same continual learning task, with a view to examining whether 
transfer and interference are governed by analogous computational 
principles. To investigate the fundamental computational principles 
that govern transfer and interference during continual learning, we 
adopted a minimalist modelling approach using layerwise linear neural 
networks. We trained both classes of learners on two sequential tasks 
(task A and task B) and then retested their knowledge of the first task 
(task A). First, we studied the effects of task similarity by varying the 
relationship between two task rules across three different groups of 
subjects (Same, Near and Far rule conditions). For both humans and 
ANNs, more similar tasks led to faster learning of task B (transfer), while 
more dissimilar tasks resulted in lower interference from task B when 
retested on task A. In ANNs, by analysing the hidden layer representa-
tions, we were able to show the precise computational principles that 
govern this effect. Consistent with previous work10, we found that 
networks encode similar tasks in shared subspaces, which leads to 
interference; when they are sufficiently different however, networks 
encode tasks in separate, non-overlapping subspaces, which eliminates 
catastrophic interference.

Alongside these phenomena, we observed substantial individual 
differences consistent with a computational trade-off between the ben-
efits of transfer and the avoidance of interference. Writing to a friend, 
the naturalist Charles Darwin described two groups of taxonomists: 
those who preferred to divide the botanical world into as many different 
species as captured their unique properties, and those who focused on 
commonalities, preferring to merge across the differences. Reflecting 
on these groups, he wrote, ‘It is good to have hair-splitters & lumpers’31. 
In our study, we found a similar divergence in how people structured 
new information. Some participants reused the same rule across all 
stimuli (‘lumpers’), which allowed them to learn faster in the second 
task, while incurring more interference when retested on the original 
task. These participants were also better at generalizing to unseen 
stimuli within a task, by applying their knowledge of the shared task 
rule. Meanwhile, other participants were able to avoid interference, 
but at the cost of worse transfer to new tasks and poor generalization 
within a task (‘splitters’). Intriguingly, this group was better at recalling 
unique properties of the stimuli. These findings suggest that a tendency 
to focus on generalization of shared features versus individuation of 
unique features may reflect a meaningful axis of variation in human 
learning, although further work is needed to determine the stability 
of these tendencies across contexts.

We sought to understand these individual differences using our 
modelling framework. We drew upon recent work in machine learning 
revealing that networks can solve the same task using fundamentally 
different representations. In so-called rich networks, inputs are encoded 
in representations which reflect the low-dimensional structure of the 
task. By contrast, so-called lazy networks rely on high-dimensional, 
discriminable projections of the inputs, which form a basis for flexible 
downstream computations but often generalize poorly32–37. This transi-
tion from the ‘rich’ to ‘lazy’ regime can be driven by the scale of the initial 
weights34,35,37. We found that we could fully account for the individual 
differences in human learning by assuming a mixture of rich and lazy 
task solutions that favour generalization or individuation.
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and Far conditions where the rules change between tasks, but not in 
the Same condition where by definition the rules remain constant 
throughout. Parameter recoveries and model validation can be found 
in Supplementary Section 4.

ANN studies
To enable direct comparisons between humans and models, each human 
participant was paired with a twinned neural network that followed the 
exact same trial schedule—receiving the same ordering of stimuli and 
feedback as that participant. In the ANN experiments, we used two-layer 
feed-forward linear networks (Fig. 1e), allowing us to study how the 
representations supporting rule learning emerge through gradient 
descent32,39. During the task A and task B learning phases, networks 
were trained to map one-hot vectors representing the discrete input 
stimuli onto Cartesian coordinates for the winter and summer locations 
on the ring. Crucially, network weights were not reset between tasks 
to allow us to study continual learning. Similarity between task A and 
task B was manipulated identically as for humans, by varying the rule 
relating the target coordinates in summer and winter. To mirror the 
continuous, fully informative feedback received by humans, we trained 
networks with trial-wise gradient updates, using a mean squared error 
(MSE) loss. During retest of task A, model weights were updated after 
summer trials, but not winter trials, analogous to participants receiving 
feedback only for their summer responses. We chose two-layer linear 
networks as the simplest architecture capable of learning transferable 
shared structure in this task. By contrast, single-layer regression models 
trained on unique (one-hot) inputs cannot share weights across stimuli 

and are therefore incapable of transfer. Because the task is linearly solv-
able, linear networks are the most parsimonious choice for studying 
the representational dynamics supporting transfer and interference. 
However, we also confirm in supplementary analyses (Supplementary 
Section 2.1 and Supplementary Fig. 5) that the key behavioural effects 
also hold in ReLU networks, supporting the robustness of our findings 
beyond linear networks.

ANNs show higher transfer at the cost of greater interference 
when learning similar tasks
All ANNs achieved near-zero training loss on both task A and task B by 
the end of their respective training phases across all conditions 
(ℒ < 10−3; Fig. 2a–c).

However, we observed that transfer and interference differed 
across levels of task similarity (Same, Near and Far rule conditions). 
First, we focus on transfer. In Fig. 3e, we show that initial accuracy for 
winter responses in task B is unimpaired in the Same condition, declines 
moderately in the Near condition and drops the most in the Far condi-
tion (Same > Far: t(202) = 605.79, P < 0.001, d = 85.25, 95% confidence 
interval (CI) 0.94–0.94; Near > Far: t(200) = 444.95, P < 0.001, d = 62.93, 
95% CI 0.80–0.81; Same > Near: t(202) = 79.43, P < 0.001, d = 11.18, 95% 
CI 0.13–0.14). This shows that, despite the novel inputs during task 
B (one-hot vectors that were not seen during task A), networks can 
capitalize on their prior training, showing greater transfer when the 
task rules are more similar.

Next, we examined interference, measured as the probability of 
incorrectly applying rule B upon return to task A. After training on both 
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Fig. 1 | Task design. a, The task consisted of mapping plant stimuli to their 
locations on a circular dial, across two contexts (summer and winter). 
Participants always responded with the probed plant’s summer location first, and 
then its winter location, receiving feedback after each response during training. 
b, Within task A, the relationship between each plant’s location in summer 
(white circle) and winter (black circle) corresponded to a fixed angular rule (for 
example, 120° clockwise) that was randomized across participants. c, In task B, all 
participants learned to map a new set of stimuli to their respective summer and 
winter locations. However, the rule defining the relationship between seasons 
differed across groups of participants. In the Same condition, the seasons for 
task B were related by the same rule previously learned in task A; in the Near 
condition, the rule shifted by 30°; in the Far condition, the rule shifted by 180°. 

d, All learners were trained on task A (120 trials), then task B (120 trials), and then 
retested on task A without feedback for winter. Transfer is defined as the change 
in winter accuracy from the final block (that is, one full stimuli cycle) of task A, 
to the first block of task B. If participants learn the rule, transfer should be better 
when the task B rule is more similar. Interference is defined as the probability of 
updating to the task B rule during retest of task A. For each participant, we trained 
a twinned neural network on the same stimuli sequence order and task rules.  
e, Networks consisted of feed-forward two-layer ANNs trained to associate sets of 
unique inputs (one-hot vectors; separate sets for each task) with the Cartesian 
coordinates of the winter and summer locations. Interference and transfer icons 
from OnlineWebFonts under a Creative Commons license CC BY 4.0.
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tasks, networks in the Near condition applied rule B to task A stimuli, 
showing truly catastrophic forgetting of the initial rule (Fig. 3j). By 
contrast, networks trained in the Far condition showed no interference: 
they were able to successfully return to using rule A.

Why would networks trained in different similarity conditions 
show such different patterns of interference? An initial clue comes 
from observing the learning curves as the networks were trained on 
task B. In the Same and Near groups, task B training resulted in rapid 
exponentially decreasing loss (Fig. 2a,b), as learning unfolds along an 
already established subspace. By contrast, loss curves in the Far group 
exhibited an initial plateau (Fig. 2c), appearing qualitatively similar to 
the curves observed when the networks were initially learning task A. 
One possibility is that this plateau occurs during the weight modifica-
tions that allow for learning to unfold in a new subspace.

To test this hypothesis, we examined the dimensionality of hidden 
representations over the course of learning, using principal compo-
nent analysis (PCA). The dimensionality did not change as a result 
of learning task B in the Same and Near conditions (that is, the same 
number of components could explain 99% of variance in the hidden 
layer representation of all inputs). By contrast, the dimensionality 
doubled after learning task B in the Far condition, supporting the idea 
that a new subspace was formed (Fig. 2d). Indeed, visualization of the 
hidden representations in these networks implied that in the Same or 
Near condition the network reused the same subspace across the two 
tasks (Fig. 2e–g). However, networks trained on highly dissimilar rules 
in the Far condition learned the new task in a separate, orthogonal 
subspace (Fig. 2h).

Finally, we formally quantified the relationship between the sub-
spaces each network used to represent the two tasks. We measured the 
principal angle between the two-dimensional subspaces encoding task 
A stimuli and task B stimuli after each network was fully trained40–42 

(Fig. 2i). In networks learning the Same or Near tasks, this angle was 
0°, indicating use of the same subspace across tasks. By contrast, the 
principal angle was 90° in networks trained in the Far condition, indicat-
ing use of an orthogonal subspace for the new task. This explains the 
slower learning of task B but preserved performance of task A at retest.

Human studies
Next, we looked at whether humans showed similar patterns of transfer 
and interference as a function of task similarity. For the human experi-
ments, we recruited separate groups of healthy online participants for 
each condition, across independent discovery and replication studies 
(discovery sample: Near, N = 50, Far, N = 50, Same, N = 52; replication 
sample: Near, N = 51, Far, N = 51, Same, N = 52).

Humans also show higher transfer but more interference when 
learning similar tasks
Human participants were able to attain high accuracy in this study 
across all conditions (see Supplementary Fig. 8 for winter and summer 
accuracy over the course of learning; average winter accuracy in final 
block of task A; Same: mean (M) = 0.81, s.e.m. = 0.12, Near: M = 0.85, 
s.e.m. = 0.10, Far: M = 0.82, s.e.m. = 0.11; average winter accuracy in 
final block of task B; Same: M = 0.84, s.e.m. = 0.13, Near: M = 0.87, s.e.m. 
= 0.14, Far: M = 0.82, s.e.m. = 0.16). However, patterns of transfer and 
interference followed the same trends observed in neural networks, 
depending on task similarity.

First, we examined transfer among human participants. When 
introduced to the new stimuli in task B, participants in the Same condi-
tion were able to infer the correct winter locations by reapplying the 
previously learned rule, shown by their response errors clustering 
around zero (Fig. 3a). A similar pattern is observed in the Near condi-
tion, although response errors are systematically biased toward the 
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Fig. 2 | Transfer and Interference in ANNs. ANNs were trained on participant-
matched trial sequences (one network per participant). a–c, Learning curves 
for network in the three conditions. Each network is trained sequentially on 
task A followed by task B (full supervision with mean-squared error loss), and 
then retested on task A. During retest, model weights are not updated after 
winter trials (analogous to participants receiving feedback only for summer 
but not winter stimuli). a shows networks trained in the same condition (tasks 
with identical rules), b shows networks trained in the near condition (tasks 
with similar rules) and c shows networks trained in the far condition (tasks with 
opposite rules). Dashed lines show task change points, showing the introduction 
of task B stimuli and the return to task A stimuli, respectively. d, The number 
of principal components needed to capture 99% variance of the activity at 
the network’s hidden layer when exposed to all inputs. This is shown split by 

condition, both after training on only task A (purple) and after training on task 
B as well (green). e, Visualization of the two-dimensional representation of task 
stimuli at the network’s hidden layer, after training on task A stimuli. PCA (with 
two components) was performed on the network’s hidden layer activity when 
exposed to all inputs. f, Visualization of hidden layer stimuli representations 
after training on task B in the Same condition. g, The same as f after training the 
network to perform task B in the Near condition. h, The same as f after training 
the network to perform task B in the Far condition (see Supplementary Fig. 2 
for additional visualizations of subspaces). i, Principal angles between task 
subspaces in the Same, Near and Far conditions. PCA (n = 2 components) was 
performed on ANN hidden layer activity for stimuli from task A versus task B, 
and the angle between subspaces computed. Larger angles indicate greater 
orthogonality between subspaces.
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previously learned rule (Fig. 3b). By contrast, errors in the Far condi-
tion are widely distributed, indicating that participants were unable to 
reuse their previous rule, instead learning the new task from scratch 
(Fig. 3c). Similar to ANNs, human participants in the Same and Near 
groups therefore showed greater transfer to task B than in the Far 
condition (Fig. 3d; one-way analysis of variance for effect of condition 
on transfer; discovery sample: F(2, 148) = 18.69, P < 0.001, η2 = 0.20; 
replication sample: F(2, 151) = 29.34, P < 0.001, η2 = 0.28. Δ accuracy 
in the Far condition was significantly lower than the Near and Same 
condition; Far < Same one-sided t-test: t(99) = 6.12, P < 0.001, d = 1.23, 
95% CI 0.15–0.29 (discovery sample); t(101) = 7.23, P < 0.001, d = 1.43, 
95% CI 0.19–0.33 (replication sample); Far < Near one-sided t-test: 
t(98) = 3.85, P < 0.001, d = 0.78, 95% CI 0.07–0.23 (discovery sample); 
t(100) = 5.52, P < 0.001, d = 1.10, 95% CI 0.13–0.28 (replication sample). 
This shows that participants were able to successfully infer the task 
rules, and benefit from transfer to task B when rules remained simi-
lar. Importantly, the pattern of switch costs that we observe is better 

explained by participants transferring their previous rule to the new 
task B stimuli, rather than alternative behavioural strategies such as 
responding randomly or repeating their summer location feedback 
(Supplementary Fig. 9).

Next, we measured interference from task B when participants 
were retested on task A. Our theory concerns interference occurring 
as a result of new learning, so participants who failed to learn task B 
were excluded from interference analyses (14% participants excluded). 
Participants in the Same condition showed response errors tightly clus-
tered around zero, reflecting consistent use of the original rule, which 
remained unchanged throughout task B (Fig. 3f). However, many par-
ticipants in the Near condition shifted towards applying rule B at retest 
(Fig. 3g), while participants in the Far condition largely maintained rule 
A rather than shifting to rule B (Fig. 3h). Quantifying this formally, we 
found that Near group participants showed higher interference after 
learning task B compared with those in the Far condition—in other 
words, they were more likely to misapply rule B during retest (Fig. 3i; 
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of the task A rule. c, The same as a for Far participants, who experience a new 
task B rule that is 180° from their previous task A rule. d, Transfer is defined 
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i, Interference is quantified as the probability of using rule B when retested on 
task A, modelled using a von Mises mixture where 1 indicates full use of rule B 
and 0 indicates use of rule A. Circles indicate mean, error bars show s.e.m. across 
participants (Near N = 80, Far N = 94; participants who failed to learn task B were 
excluded), and colours correspond to condition. P values correspond to results 
of one-sided t-test (Near > Far: t(172) = 3.44, P < 0.001, d = 0.53, 95% CI 0.08–0.31). 
***P < 0.001. j, Interference in ANNs trained on participant-matched schedules. 
Colours correspond to training condition. Note that human data are aggregated 
across the discovery and replication samples (for data plotted by sample, see 
Supplementary Fig. 6). Interference and transfer icons from OnlineWebFonts 
under a Creative Commons license CC BY 4.0.
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p(rule B) in Near > Far, one-sided t-test; t(86) = 2.56, P = 0.006, d = 0.55, 
95% CI 0.04–0.37 (discovery sample); t(84) = 2.27, P = 0.013, d = 0.50, 
95% CI 0.02–0.35 (replication sample); see Supplementary Section 4 
for further detail on model validation and parameter recoveries, and 
Supplementary Fig. 7 for effects on retest accuracy).

Taken together, these results support the idea that humans and 
neural networks show similar patterns of transfer and interference, 
with the same systematic dependency on task similarity. In neural 
networks, we can see that learning tasks of intermediate similarity 
promotes shared representations, manifesting in higher transfer across 
tasks at the cost of greater interference. By contrast, learning highly 
dissimilar tasks leads to less transfer but lower interference between 

tasks. We find these patterns of trade-offs between the benefits of 
transfer and avoidance of interference are preserved across the two 
learning systems.

Individual differences in transfer and interference
Although participants learning similar tasks generally showed more 
interference than those learning dissimilar tasks, this pattern was not 
universal: many individuals in the Near group showed little to no inter-
ference. In fact, interference weights in this group were bimodally 
distributed (Fig. 4a), suggesting the presence of two distinct learning 
strategies. Some individuals appeared to overwrite rule A with rule 
B, while others returned to rule A, effectively avoiding interference 
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Fig. 4 | Individual differences in transfer and interference. a, In the Near 
condition, interference at retest is bimodally distributed. Participants in the 
Near group were classified into splitters (those with low interference from task 
B) and lumpers (those with high interference from task B). b, A histogram of 
all winter retest errors for splitters (light blue) and lumpers (dark blue). Lines 
show the posterior model fits, computed using the average concentration (κ) 
and mixture weight (π) parameters across participants in each group. c–h, On 
the left (in blue), we plot behavioural data from the splitters and lumpers. On 
the right (in grey), we plot data from ANNs trained under a lazy learning regime 
(forming unstructured, high-dimensional task solutions), versus trained under 
a rich learning regime (forming structured, low-dimensional task solutions). In 
each plot, circles show mean metrics in each group, dots show individual data 
points and error bars show s.e.m. (splitters: N = 42, lumpers: N = 38). P values 
correspond to results of two-sided t-tests. c, Interference among splitters and 
lumpers is plotted for illustrative purposes only (because this metric determines 
the classification), for comparison with interference in lazy and rich ANNs (ANNs: 
t(200) = 32.8, P < 0.001, d = 4.64, 95% CI 0.75–0.84). d, Transfer performance in 
the groups, as defined throughout as the change in winter accuracy between 
the final exposure to task A stimuli and the first exposure to task B stimuli 
(humans: t(78) = 3.95, P < 0.001, d = 0.89, 95% CI 0.08–0.23; ANNs: t(200) = 20.97, 
P < 0.001, d = 2.97, 95% CI 0.24–0.29). e, Generalization accuracy is the average 
winter accuracy for the test stimulus in task A, for which feedback about winter 
is withheld throughout. Because participants only receive feedback about its 

summer location, they must infer the correct winter location by generalizing 
their knowledge of the task A rule (humans: t(78) = 2.74, P = 0.008, d = 0.62, 95% CI 
0.03–0.21; ANNs: t(200) = 12.72, P < 0.001, d = 1.80, 95% CI 0.30–0.40). f, Average 
accuracy for summer responses, which must be remembered for each stimulus 
separately (in contrast to winter responses, which can be inferred by applying 
the rule to the summer feedback). This requires participants to discriminate 
the unique stimuli. ANN performance is shown for the first 120 trials of task A 
training, to match the length of human training. For full accuracy trajectories 
over time, including later stages of training, see Supplementary Fig. 15 (humans: 
t(78) = 3.40, P < 0.001, d = 0.76, 95% CI 0.03–0.11; ANNs: t(200) = 3.60, d = 0.51, 
P < 0.001, 95% CI 0.02–0.07). g, At the end of the study, participants were 
asked to recall when they saw each stimulus for the first time (at the beginning 
of the study, or halfway through). In other words, this reflects the ability to 
explicitly report the onset of unique task stimuli (humans only: t(78) = 3.69, 
P < 0.001, d = 0.81, 95% CI 6.5–22.8). h, Representational similarity between task 
A and task B stimuli in ANNs, quantified as the principal angle between their 
respective hidden layer subspaces after task B training. Rich networks collapse 
the representations onto the same subspace, while lazy networks retain greater 
distinction between representations (ANNs only: t(200) = 125.50, P < 0.001, 
d = 17.75, 95% CI 73.4–75.8). **P < 0.01, ***P < 0.001 (c–h). Credit: interference  
and transfer icons from OnlineWebFonts under a Creative Commons license  
CC BY 4.0.
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(Fig. 4b). In the context of our theory, this naturally leads to the ques-
tion of whether these individual differences are also characterized by 
a trade-off between benefitting from transfer and avoiding interfer-
ence. We predicted this may reflect differences in how participants 
approached the task structure, with some participants merging across 
tasks based on shared structure (lumpers), and others focusing on the 
differences between stimuli (splitters). To study this phenomenon fur-
ther, we used a model-based approach to classify lumpers and splitters. 
Participants whose responses during retest of task A were best fit by 
rule A were categorized as splitters, while those whose responses were 
best fit by rule B were categorized as lumpers. In our cohort, 47.5% of 
Near-group participants were lumpers.

If the increased interference observed in lumpers (Fig. 4c, left) 
arose from a focus on shared structure, we would expect lumpers 
to demonstrate better transfer compared with splitters. Indeed, we 
found that lumpers were better at switching to task B, benefitting 
from similarities between the two tasks (Fig. 4d, left; transfer: splitters: 
M = −0.21, s.e.m. = 0.03, lumpers: M = −0.06, s.e.m. = 0.03; two-sided 
t-test: t(78) = 3.95, P < 0.001, d = 0.89, 95% CI 0.08–0.23). In addition, if 
lumpers were good at capitalizing on shared task structure, we would 
expect lumpers to successfully generalize the rule to untrained stimuli 
within task A. To test this, we leveraged a feature of our experimental 
design: for one ‘test’ stimulus in task A, feedback was not provided for 
winter responses, allowing us to measure generalization. We found 
that lumpers indeed exhibited higher accuracy for the test stimulus, 
demonstrating greater within-task generalization (Fig. 4e, left; split-
ters: M = 0.69, s.e.m. = 0.04, lumpers: M = 0.81, s.e.m. = 0.03; two-sided 
t-test: t(78) = 2.74, P = 0.008, d = 0.62, 95% CI 0.03–0.21). In other words, 
individuals who experienced more interference were better at extend-
ing their knowledge to new situations—both when learning task B as well 
as when inferring untrained responses within a task. This is consistent 
with our theory that lumpers are relying more on shared representa-
tions during learning.

Could lumpers be performing better on these metrics simply as a 
result of higher task engagement? If this were the case, we would expect 
them to show generally higher accuracy across the board. To address 
this possibility, we assessed participants’ accuracy for the ‘summer’ 
response during task A—the initial phase of the experiment. Due to 
the sequential nature of each trial (participants are always probed on 
summer before winter), summer accuracy reflects the ability to recall 
the unique, memorized location of each stimulus, whereas winter 
accuracy can be inferred by applying the rule to the summer location. 
We found that lumpers—while achieving higher accuracy in transfer 
and generalization—were significantly worse than splitters at remem-
bering the unique summer positions (Fig. 4f, left; splitters: M = 0.671, 
s.e.m. = 0.015; lumpers: M = 0.600, s.e.m. = 0.015; two-sided t-test: 
t(78) = 3.40, P = 0.001, d = 0.76, 95% CI 0.03–0.11). Notably, splitters 
retained their summer accuracy advantage over lumpers throughout 
the entire experiment, including during task B and the A retest phases 
(Supplementary Fig. 15). This indicates that splitters were not merely 
less engaged in the task, because they performed better than lumpers 
at remembering summer locations. Instead, one possibility is that they 
relied on a memorization-based strategy that prioritized memoriz-
ing the correct locations, rather than learning to apply the generaliz-
able rule. Consistent with this interpretation, response precision at 
retest (quantified by the concentration parameter κ) was significantly 
lower in splitters than lumpers (Supplementary Fig. 14d; two-sided 
t-test: t(78) = 2.83, P = 0.006, d = 0.62, 95% CI 4.6–29.4; Mann–Whitney: 
U = 1,098.0, P = 0.004), but nontheless splitters achieved higher accu-
racy at retest (Supplementary Fig. 14e; two-sided t-test: t(78) = −1.80, 
P = 0.076, d = 0.40, 95% CI −0.01 to 0.97; Mann–Whitney: U = 512.0, 
P = 0.006). This is consistent with lumpers performing precise but 
systematically biased responses (applying the task B rule), while split-
ters relied more on memorized mappings from task A, leading to more 
variable but less biased responses.

Next, we asked whether these different strategies related to par-
ticipants’ temporal memory of the stimuli. At the end of the study, we 
presented participants with each stimulus independently and asked 
them to report whether they had originally seen the stimulus in the first 
or second half of the study (task A or task B). We found that lumpers 
were worse at explicitly reporting this temporal separation, consistent 
with our theory that lumpers merged representations of stimuli across 
tasks (Fig. 4g; splitters: M = 90.2%, s.e.m. = 1.9, lumpers: M = 75.5%, s.e.m. 
= 3.6, two-sided t-test: t(78) = 3.69, P < 0.001, d = 0.81, 95% CI 6.5–22.8). 
Given that recall accuracy was clustered near the upper boundary, we 
verified the group difference using a mixed-effects logistic regres-
sion. This robustness check confirmed that lumpers were worse at 
categorizing the stimuli by their temporal separation (β = 1.35, s.e.m. 
= 0.38, z = 3.57, P < 0.001). Finally, we verified that all results reported 
above remain unchanged after excluding participants best fit by a 
model capturing random responding, supporting our claim that these 
behavioural patterns capture true differences in strategy rather than 
noise (see control analyses in Supplementary Section 5.2).

Taken together, these results suggest that participants differed 
in their tendency to learn the task by focusing on generalization of 
shared structure or memorization of the unique features of stimuli. 
Crucially, these individual differences in strategy were underpinned 
by the same fundamental trade-offs: individuals who benefitted more 
from generalizing shared structure also incurred greater interference.

Strategy differences can be captured by ANNs trained in rich or 
lazy regimes
Next, we investigated whether the individual differences in transfer 
and interference observed in humans could be captured within our 
connectionist framework. Neural networks can solve the same task 
with minimal training error while relying on fundamentally differ-
ent internal representations of stimuli. In the so-called rich regime, 
networks encode inputs using representations that reflect the task’s 
underlying structure and dimensionality. By contrast, networks in the 
lazy regime leverage the initial, random projections of inputs, forming 
high-dimensional representations that facilitate individuation but 
are independent of the task structure34–37,43,44. Because individual dif-
ferences within the Near group were not driven by differences in task 
structure or engagement, we hypothesized that lumpers and splitters 
might be captured by networks trained in the rich and lazy learning 
regimes, respectively. For example, prior work has shown that rich 
networks generalize better than lazy networks43,44. A well-established 
method for guiding networks to form rich or lazy representations is 
by varying the scale of initial weights37,43,44. While our previous simu-
lations used small initial weights, promoting the formation of rich 
structured representations, we reasoned that training a mixture of 
networks in both the rich and lazy regimes could capture the spectrum 
of individual differences in transfer, generalization and interference 
observed in human learners.

As hypothesized, we found that rich and lazy networks mirrored 
many of the behavioural differences observed in the lumpers and split-
ters, respectively. First, rich networks exhibited greater interference 
from learning task B (Fig. 4c, right; lazy: M = 0.20, s.e.m. = 0.02, rich: 
M = 1.0, s.e.m. = <0.01, two-sided t-test: t(200) = 32.8, P < 0.001, d = 4.64, 
95% CI 0.75–0.84). Second, they showed superior transfer performance 
when task B was introduced (Fig. 4d, right; lazy: M = −0.43, s.e.m. = 
0.012, rich: M = −0.17, s.e.m. = 0.001, two-sided t-test: t(200) = 20.97, 
P < 0.001, d = 2.97, 95% CI 0.24–0.29). Third, rich networks demon-
strated better generalization to the held-out test stimulus (Fig. 4e, right; 
lazy: M = 0.59, s.e.m. = 0.03, rich: M = 0.94, s.e.m. = 0.003, two-sided 
t-test: t(200) = 12.72, P < 0.001, d = 1.80, 95% CI 0.30–0.40). Fourth, rich 
networks also showed significantly lower summer accuracy than lazy 
networks during task A (Fig. 4f, right; lazy: M = 0.690, s.e.m. = 0.008; 
rich: M = 0.646, s.e.m. = 0.009; two-sided t-test: t(200) = 3.60, d = 0.51, 
P < 0.001, 95% CI 0.02–0.07). This effect is clearest in the early stages 
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of learning; specifically, we computed ANN performance over the first 
120 trials of task A training, to match the training length experienced 
by human participants (for a full breakdown of accuracy trajectories 
over time, including later stages of learning, see Supplementary Fig. 15).

Finally, we turn to the result that splitter participants were sub-
stantially better at remembering the onset of each stimulus—that is, 
whether a stimulus was first encountered in training on task A or task 
B. This ability to explicitly distinguish when a stimulus was introduced 
depends on maintaining separable representations of the two tasks. 
To test whether representational compression differed between rich 
and lazy ANNs, we measured the degree of overlap between task A and 
task B stimuli hidden layer representations after task B training, using 
the principal angle. In rich networks, the task subspaces were nearly 
aligned (mean principal angle 0.49°, s.e.m. = 0.006), whereas the first 
two principal components in the lazy networks were near orthogonal 
for the two tasks (mean principal angle 75.10°, s.e.m. = 0.59), with 
a highly significant difference between groups (Fig. 4h, two-sided 
t-test: t(200) = 125.50, P < 0.001, d = 17.75, 95% CI 73.4–75.8). These 
findings provide a representational-level explanation for the temporal 
memory differences observed in humans: possibly, participants who 
compressed information across tasks (that is, lumpers) suffered when 
required to recall temporally specific information about task stimuli, 
just as rich networks collapsed their task representations.

Overall, these analyses support our hypothesis that patterns of 
transfer and interference systematically depend on whether learners 
use shared representations. In particular, in the rich regime, represen-
tations of stimuli in the neural networks are structured along a shared 
low-dimensional manifold, leading to high interference, transfer and 
generalization. By contrast, the lazy regime utilizes disjoint hidden 
representations, resulting in lower interference, transfer and generali-
zation. Notably, both learning regimes support successful acquisition 
of both tasks, suggesting that differences in representation may go 
unnoticed when assessing only final performance without the inclusion 
of held-out test stimuli or periods of retest after new learning. These 
patterns characterizing the different task solutions within the Near 
group reflect the same fundamental trade-off: sharing representations 
across tasks brings greater transfer at the cost of higher interference.

While our focus has been on comparing human strategies with rich 
and lazy learning regimes, several other representational solutions 
are known to mitigate interference in continual learning. To explore 
this broader landscape, we conducted simulations using networks 
trained with three commonly studied interference-mitigation strate-
gies: elastic weight consolidation, replay and modular architectures 
(Supplementary Section 6). Because splitters avoided interference but 
failed to generalize within task, their behaviour most closely resembled 
lazy networks, suggesting a high-dimensional task solution akin to 
memorization over other forms of interference mitigation such as 
replay (Supplementary Figs. 17 and 18).

Discussion
This Article makes three primary contributions. First, we show that 
humans learning structured tasks in short succession face a trade-off 
between transferring knowledge across tasks and avoiding interference 
on previous tasks. This trade-off is shaped both by global properties, 
such as the similarity between successive tasks, and by individual differ-
ences in the solutions people learn. Second, we show this behavioural 
pattern closely parallels predictions from linear neural networks, which 
exhibit a trade-off between sharing and separating task representations 
during continual learning. Following our findings in humans, we find 
this balance in linear neural networks is influenced both by intertask 
similarity and the properties of the initial task solution. Finally, we dem-
onstrate that individual differences in the strategies people learn give 
rise to consistent and complementary performance profiles, favouring 
either generalization across shared task structures or discrimination 
of unique task properties.

Across both humans and ANNs, learning more similar tasks led to 
greater transfer but at the cost of higher interference. Consistent with 
previous literature10, we observed that ANNs solved similar tasks by 
repurposing existing representations, facilitating faster learning but 
corrupting prior representations. By contrast, learning orthogonal 
tasks encouraged the formation of separate representations, pre-
venting interference. This aligns with a growing literature in machine 
learning showing that catastrophic forgetting can be mitigated by 
encouraging networks to learn in orthogonal subspaces in more com-
plex settings45–49. Machine learning methods differ in how they impose 
subspace separation: for example, Duncker et al.47 proposed a continual 
learning algorithm that encourages networks to organize dissimilar 
task dynamics into orthogonal representational subspaces, while 
others impose hard task boundaries using precomputed orthogo-
nal projection matrices (for example, ref. 46) or gradient-penalty 
methods49. While our results are grounded in simple linear networks, 
an important direction for future work is to investigate whether the 
principles we observe also hold in deeper, nonlinear networks used in 
modern artificial intelligence systems.

In our setting, linear networks exposed to orthogonal rules in 
the Far condition naturally developed orthogonal subspaces over the 
course of learning, without any architectural constraints or additional 
loss terms. This demonstrates that orthogonal representations can 
emerge spontaneously when the meta-statistics of the task struc-
ture support them. While we observe a similar behavioural pattern in 
humans, we emphasize that the emergence of orthogonal representa-
tions in the human brain remains a theoretical prediction, pending 
empirical confirmation via neural recordings.

While neural networks provide a useful computational framework 
for studying learning, they are not biological brains. Our approach 
treats them as tools to study general principles of continual learn-
ing rather than assuming them to be analogues of human cognition. 
However, the observed trade-offs between sharing and separating 
representations during learning align with broader theories of task 
switching in humans28,29,50,51, and orthogonal neural representations 
are known to mitigate task interference in biological systems42,44,52–62. 
A recent relevant study in mice63 demonstrated that individual differ-
ences in interference during continual learning were correlated with the 
degree of orthogonalization in neural representations, underscoring 
the biological relevance of subspace separation in maintaining memory 
stability. Such partitioning could, in principle, be implemented bio-
logically via mechanisms such as synaptic consolidation64 or neural 
pruning65, which aim to protect task-relevant parameters by selectively 
reducing plasticity. While our study remains agnostic about the precise 
biological substrates, we view these mechanisms as complementary 
to our representational framework, offering potential routes by which 
the brain could achieve separation of task representations.

Despite finding a general trend that human learners exposed to 
two similar tasks experienced more interference, this was not the case 
for everyone. Closer examination of learners in the Near group who 
avoided interference revealed two distinct approaches to continual 
learning. Lumpers leveraged shared structure across tasks, enabling 
better generalization and transfer but suffering more interference. 
Splitters, by contrast, exhibited reduced interference, but this came at 
the cost of poorer generalization within a task and weaker transfer to 
the second task. This distinction was mirrored in ANNs trained under 
rich versus lazy regimes, with low-dimensional, task-compressed 
(rich) solutions resembling lumpers, and high-dimensional, 
task-agnostic (lazy) solutions resembling splitters. Our simulations 
show that interference can be mitigated even when learning simi-
lar tasks, if the network adopts high-dimensional solutions. This 
reveals a fundamental trade-off: while compressed, low-dimensional 
representations support efficient generalization and downstream 
transfer36,66–69, they are also more vulnerable to interference when 
reused across tasks.
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Although these patterns suggest similar computational con-
straints across systems, there are various limitations to our inter-
pretation of these individual differences. First, while rich and lazy 
networks serve as a computational proxy for these different strategies, 
their biological relevance remains uncertain. There is no direct bio-
logical counterpart for the changes in initial weight scale that lead to 
these varying representations, and further work would be required to 
establish that the final representations supporting performance bear 
similarities across the two groups of humans and ANNs44.

A second limitation is that, without neural data, we cannot deter-
mine how tasks are represented in the brain across the two groups, 
even if their behavioural patterns suggest underlying differences in 
strategy. Previous neural recordings have suggested that the brain 
may simultaneously use both rich and lazy representational schemes 
in different regions: early sensory areas exhibit high-dimensional, 
task-agnostic codes resembling lazy learning, while higher-order 
areas such as posterior parietal cortex contain lower dimensional 
task-specific representations44,70. These findings underscore the chal-
lenge of associating human behaviour with a single form of representa-
tion, but suggest that comparisons at the level of specific brain regions 
may also be informative. Future neuroimaging studies could compare 
the neural representations of lumpers and splitters in our sequential 
learning paradigm to investigate differences in both dimensionality 
and localization of task representations across the brain.

A third limitation is that it remains unclear how far the distinction 
between splitters and lumpers generalizes beyond our task setting. 
Our classification was based on behavioural patterns of interference, 
and although this allowed us to predict a rich range of independent 
behavioural metrics, future work could strengthen the basis of this dis-
tinction by introducing a novel task to assess whether the classification 
generalizes beyond the current setting. Similarly, alternative model 
parameterizations could potentially provide a closer fit to the splitter 
and lumper response distributions, offering complementary perspec-
tives on the behavioural distinctions observed in our task. In addition, 
it would be interesting to explore parametric analyses of individual 
differences using a continuous measure of network richness. Recent 
theoretical work37 provides a principled framework for understanding 
the variation between rich and lazy learning along a continuous axis. 
Their analytical characterization of the transition between lazy and rich 
learning regimes in deep linear networks (driven by the relative scale 
of initialization) offers a promising basis for predicting behavioural 
patterns along this continuum, potentially yielding a more nuanced 
account of human variability in learning strategies beyond the bimodal 
approach taken in the current study.

While we have argued that humans and ANNs face similar com-
putational trade-offs during continual learning, humans are likely to 
deploy additional mechanisms to balance these challenges. In particu-
lar, the medial temporal lobe supports the rapid acquisition of new 
tasks before integration into cortical knowledge systems over longer 
timescales71–73, a process that our linear networks cannot replicate. 
Biological systems may also mitigate interference through mechanisms 
such as replay-based consolidation71,74,75 and synaptic consolidation76–78, 
both of which have inspired continual learning approaches in artificial 
learning systems64,65,79–82.

While we explored ANN implementations of these mechanisms—
including replay, synaptic consolidation (via elastic weight consolida-
tion) and modular architectures—we found that none recapitulated 
the behavioural profile of human splitters, which was most closely 
matched by lazy networks with high-dimensional, task-specific repre-
sentations (Supplementary Section 6 and Supplementary Figs. 17 and 
18). It is possible that such mechanisms operate on timescales beyond 
those captured by our task. Replay has been shown to support ongoing 
generalization83–85, with interesting implications for how knowledge 
continues to be structured after learning. This parallels recent stud-
ies in rodents showing that generalization abilities can continue to 

develop even after task performance has plateaued86. Synaptic con-
solidation mechanisms observed in biological systems76–78 may also 
require extended consolidation periods to prevent interference. These 
temporal considerations may help explain why participants in the Near 
condition who avoid interference (splitters) succeed through strategies 
that come at the cost of transfer and generalization. Specifically, while 
participants in the Far condition naturally separate task representa-
tions due to their dissimilarity, such separation may be more difficult 
to establish in the Near condition, where the similarity of rules blurs 
task boundaries. The strategy observed in splitters may reflect a viable 
solution for mitigating interference in settings where neither offline 
consolidation over longer timescales nor straightforward inference of 
task boundaries is available to learners.

In our study, neither humans nor ANNs were given explicit task 
labels or cues about when the task changed. This design mimics more 
naturalistic learning environments, where task boundaries are inferred 
from environmental structure rather than signalled externally87. An 
important future direction will be to characterize how and when rep-
resentational separation occurs for different levels and dimensions of 
task similarity. One promising approach is to draw on meta-learning 
methods that infer task boundaries from shifts in data structure, such as 
Bayesian frameworks that jointly segment data and learn task models88.

Humans are experts at identifying boundaries in the world using 
attributes that go beyond the notion of rule similarity we use here6,87,89. 
For example, previous work has shown that the temporal proximity 
of learning episodes is critical for knowledge partitioning in humans, 
such that events closer in time are more likely to be attributed to the 
same source44,90,91. This general ability to partition knowledge over 
time has been linked to various aspects of mental health, including 
anxiety92 and symptoms in post-traumatic stress disorder93. Future 
work could extend our understanding of these processes in mental 
health conditions by considering how these behaviours might balance 
transfer and interference in different environments. This perspective 
highlights another component of the challenge: while forgetting 
past knowledge will be maladaptive, there is of course the need for 
flexibility in revising knowledge structures when the environment 
has truly changed6.

Finally, over extended training or in settings involving many 
tasks, humans appear capable of decomposing tasks into reusable 
elements94,95. Recent work by Driscoll et al.96 provides a potential com-
putational mechanism for this, showing that recurrent neural networks 
trained on multiple tasks develop dynamic motifs—such as decision 
boundaries or attractor states—that are reused across tasks. Extend-
ing our paradigm to longer sequences of tasks in humans could reveal 
whether similar reusable structures emerge to support the decomposi-
tion of tasks into shared and distinct components, facilitating transfer 
without interference.

In conclusion, our results support the theory that patterns of 
transfer and interference in humans and ANNs reflect a computational 
trade-off between sharing and separating representations during 
learning. Across both systems, this balance depends on global trends 
such as task similarity, as well as properties of the learner’s initial task 
solution. Understanding these constraints may provide new avenues 
for characterizing individual differences in continual learning and how 
they relate to stable cognition.

Methods
Participants
Participants were recruited on Prolific.co (discovery study: N = 202 
recruited; N = 151 after exclusion; replication study: N = 215 recruited; 
N = 154 after exclusion). Prolific inclusion criteria included being 
between 18 and 40 years old, being an English speaker, being located 
in the US or the UK, having a minimal approval rate of 90% and hav-
ing a minimum of five previous submissions on Prolific. Among the 
305 participants total remaining after exclusion, the mean age was 
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31.37 years (s.d. 8.27) and 157 were female. After eligible participants 
were recruited, we additionally excluded participants who reported 
using tools (for example, pen and paper) in the debrief, and participants 
whose accuracy did not significantly exceed chance performance in 
the final two blocks of learning task A. We preregistered our exclusion 
criteria, our experimental design, and our main hypotheses about 
transfer and interference. The discovery study was preregistered at 
https://osf.io/ps4m9 (preregistered under ‘Experiment 1’). The replica-
tion study was preregistered at https://osf.io/92dpm. Ethical approval 
was obtained from the Oxford Central University Research Ethics 
Committee (Ref: R50750/RE009). All participants gave informed con-
sent before the experiment. The experiment took on average 35 min 
to complete, and participants were compensated £8 per hour with a 
performance-dependent bonus of up to £3.

Task design
The task required participants to map unique stimuli (images of fic-
tional plants) to circular outputs (locations on a planet) in two distinct 
contexts: summer and winter. On each trial, participants adjusted a 
dial to indicate the correct position of each stimulus on a circle, always 
indicating its summer location followed by its winter location (receiv-
ing feedback after each response). The experiment consisted of two 
sequential tasks (task A and task B), each defined by a unique set of 
six stimuli. Participants were not informed that a second task would 
follow and received no explicit indication when the task changed (see 
Supplementary Section 1 for task instructions). Within each task, there 
was a fixed relational rule that defined the angular offset between the 
stimuli positions in summer and winter (rule A in task A; rule B in task 
B). The study was divided into three phases: training on task A (phase 
1), training on task B (phase 2) and retesting of task A without feedback 
for the winter season feature (phase 3).

In total, participants completed 300 trials equivalent to 25 blocks. 
Each training phase (phases 1 and 2) consisted of 120 trials (10 blocks) 
where each block included a single presentation of each stimulus in 
each season (6 stimuli × 2 seasons × 10 blocks). The retest phase (phase 
3) consisted of 120 trials (10 blocks) of task A stimuli only (6 stimuli × 2 
seasons × 10 blocks). While participants were always probed on the two 
seasons of a given stimulus in a fixed order (summer then winter), the 
order of presentation of the different stimuli was randomized within 
a block. During the retest phase, participants continued to receive 
feedback for the summer season (always presented first) but not the 
winter season.

Feedback was presented as a circle indicating the true stimulus 
location, with Gaussian noise (s.d. 5°) added. Feedback circles were 
colour-coded green when the response was sufficiently accurate to 
gain points, and red otherwise. Points were allocated on the basis of 
the response error (the angular distance between the participant’s 
response and the correct location). Points were calculated as

points = log ( 1
error2

) .

Points were capped at a maximum of ten per trial and rounded 
to the nearest integer (errors ≥30° earned no points). During training 
(phases 1 and 2), the cumulative score was displayed at the top of the 
screen. One of the six stimuli in task A was randomly selected as a test 
stimulus. For the test stimulus, feedback on the winter location was 
withheld for the entirety of the experiment, requiring participants 
to infer the correct location using the task rule. After completing the 
full study, participants were tested on their ability to report the onset 
of each stimulus. Each stimulus was presented twice in a randomized 
order, and participants were asked to indicate with a left/right button 
press whether they had observed each stimulus for the first time near 
the beginning of the study (corresponding to task A stimuli), or halfway 
through the study (corresponding to task B stimuli).

Conditions
Participants were randomly assigned to one of three conditions, 
defined by the similarity of the rules in tasks A and B. In the Same con-
dition, the rule remained identical across tasks. In the Near condition, 
the rule changed by 30° (clockwise or counterclockwise) between tasks. 
In the Far condition, the rule changed by 180° between tasks.

The task A rule was selected randomly and uniformly for each par-
ticipant. Across both tasks, the angular distance between summer and 
winter locations was constrained to be greater than 30°. This restriction 
placed the task A rule in the ranges of 60–150° and 210–300°, and task 
B rules in the ranges of 30–120° and 240–330°. The summer locations 
of stimuli within each task were randomized for each participant. 
Regular spacing between stimuli was enforced by sampling six initial 
positions at 60° intervals with added Gaussian noise (s.d. 15°), sepa-
rately for each task.

Behavioural analyses
We began by analysing participants’ accuracy. Response error is  
defined as the absolute difference between a plant’s true location 
and the participant’s response on any trial, in degrees. To compute 
accuracy, we normalized response error using the maximum possible 
error (180°):

accuracy = 1 − ( error
180∘ ) .

An accuracy of 1 therefore indicates a perfect response, while an 
accuracy of 0 indicates the maximum possible error. Unless explicitly 
stated otherwise, we analysed accuracy for the winter probe responses, 
which invoke the task rule (because winter is a fixed offset from summer 
and is always preceded by summer).

For our main two hypotheses concerning transfer and inter-
ference (preregistered at https://osf.io/92dpm/), we report the 
results separately for the discovery and replication samples (see 
Supplementary Fig. 6 for data plotted by sample). To measure transfer, 
we calculated the change in accuracy for winter response between the 
final block of task A training (block 10) and the first block of task B train-
ing (block 11). Differences in this variable across conditions (Same, Near 
and Far) were evaluated using a one-way analysis of variance. Post-hoc 
comparisons were conducted using one-sided t-tests to evaluate the 
specific predictions that transfer would be lowest in the Far condition, 
followed by the Near condition and the Same condition.

Interference was measured as the probability of using rule B dur-
ing retest of task A. We computed participants’ rule responses as the 
offset between their winter season response and the feedback received 
for the previous summer response. When this metric is computed 
on the ground-truth winter location, this offset corresponds to the 
task rule (distance between winter and summer) which is consist-
ent for all stimuli within a task. To quantify interference between the 
different rules in the Near and Far conditions, we fit a mixture of two 
von Mises distributions38 (that is, a circular analogue of the normal 
distribution) to participants’ rule responses, using expectation maxi-
mization. We fit a model with predetermined means of rule A (θA) 
and rule B (θB) for the two distributions, and two free parameters: a 
mixing weight (π) that captures the relative contribution of θA and θB, 
and a single concentration parameter across both distributions (κ), 
representing dispersion of the distributions around their respective 
means. Model fitting was carried out in python using the SciPy pack-
age, with custom code adapted from https://framagit.org/fraschelle/
mixture-of-von-mises-distributions (ref. 97), based on the method 
presented in ref. 38. Models were fit separately for each participant, 
over a range of initial π and κ, with the best-fitting model identified by 
its log likelihood. Further detail about the the model fitting procedure 
and model validation is included in Supplementary Section 4, and 
participant-level model fits with posterior distributions overlaid on 
responses are shown in Supplementary Figs. 10 and 11.
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We used a one-sided t-test to evaluate the hypothesis that the 
contribution of rule B (π) will be greater in the Near condition than 
the Far condition during retest of task A, reflecting greater interfer-
ence from learning task B. As reported in our preregistration, for our 
interference analysis we excluded participants who failed to learn 
rule B during task B. Our prediction rests on the assumption that 
interference when retested on task A is a result of learning task B, so 
if participants fail to learn task B we did not expect them to show this 
interference effect at retest of A. We identified these participants by 
fitting responses during task B (precluding the first block of B where 
participants have not had the opportunity to learn) to two separate 
models reflecting use of rule A and rule B (single von Mises distribu-
tions centred on θA and θB, respectively). Participants who continued 
to use rule A during task B were excluded in the interference analyses 
(14%; n = 28 excluded out of 202 participants total in the Near and 
Far groups).

Individual differences in Near condition
Participants in the Near condition were categorized as either splitters 
or lumpers based on their susceptibility to interference from task B dur-
ing the retest of task A. To quantify this, we fit participants’ responses 
during retest to two separate von Mises distributions: one centred 
on the task A rule (θA) and the other on the task B rule (θB). Because 
the models were matched in complexity, the best-fitting model was 
determined using the minimum negative log likelihood. Participants 
who returned to using rule A during retest were classified as splitters, 
while those who updated to using rule B were categorized as lumpers. 
We continued to exclude those participants who had failed to update 
to rule B at all during task B (outlined in the previous section). After cat-
egorizing participants as splitters or lumpers, we compared a number 
of behavioural metrics between these two groups.

•	 Transfer. As previously defined, this is the cost of introducing 
new task B stimuli. Specifically, this is the change in accuracy for 
winter responses from the final exposure to task A stimuli to the 
first exposure to task B stimuli.

•	 Generalization. Winter accuracy for the test stimulus, for 
which participants never receive feedback. To infer the correct 
response, participants had to generalize their knowledge of the 
task rule to feedback received about the stimulus’ summer loca-
tion. Generalization accuracy is averaged over the second half of 
task A only, to allow for rule learning.

•	 Summer accuracy. Average accuracy for summer responses in 
task A. Unlike winter responses, which could be inferred via the 
task rule, summer responses relied on participants’ memory of 
the unique stimuli locations. See Supplementary Section 5 for 
analyses showing that this splitter advantage for summer holds 
in all three sections of the study (train A, train B, retest A).

•	 Stimulus onset accuracy. After completing the entire study, 
participants were asked to report the temporal onset of each 
stimulus—whether first encountered in the first half of the study 
(task A) or the second half (task B). In other words, this is their 
ability to distinguish unique stimuli on the basis of their tempo-
ral separation during the study.

We used two-sided t-tests to compare the performance of lumpers 
and splitters for each metric. In addition, because stimulus onset recall 
accuracy was clustered around the upper boundary, we performed a 
robustness check by conducting a mixed-effects logistic regression. 
The model predicted trial-wise binary accuracy during the debrief 
categorization test from group (lumper/splitter), with a random inter-
cept for participant.

Further analyses explored the nature of interference in both the 
Near subgroups, and Far condition, focusing on the cognitive mecha-
nisms underlying errors made. In Supplementary Section 4.2, we pre-
sent a model comparison designed to distinguish whether interference 

is better captured by discrete rule swaps or by graded biases. In line 
with our ANN-inspired predictions, we found that lumpers were best 
fit by models consistent with graded updating (single distribution), 
whereas errors in the far group exhibited evidence of swap-like errors 
(Supplementary Fig. 12). We extend this analysis for the lumper group, 
by allowing the interference mean to vary freely. The results show 
strong alignment between the fitted offset and the true rule B direction, 
further supporting the interpretation that lumpers updated a single 
internal distribution to reflect the new rule (Supplementary Section 
4.3 and Supplementary Fig. 13).

ANN training procedure
All networks were trained on participant-matched task schedules, 
meaning each network was paired with a specific human participant 
and received the exact same sequence of trials—including the precise 
stimulus order and corresponding target outputs defined by that par-
ticipant’s task rules. Each experimental phase (train task A, train task 
B and retest task A) consisted of single-batch updates for participant 
training trials (120 trials per phase, that is, 10 repetitions of 6 unique 
stimuli probed on each season sequentially). Because neural networks 
require more training to reach stable performance, we trained each 
network on its twinned participant schedule repeated 100 times per 
task phase. New networks were initialized for each participant sched-
ule (n = 305 networks total). Network weights were not reset between 
experimental phases. To match the learning opportunities available to 
human participants, networks received gradient updates only during 
trials in which participants received feedback—that is, all trials except 
the winter trials for the test stimulus in task A and the winter trials dur-
ing the retest phase of task A.

Neural network simulations were implemented and analysed 
in Python using the Pytorch, Scikit-learn and Numpy packages. We 
trained two-layer feed-forward linear networks, mapping discrete 
one-hot encoded inputs to continuous output coordinates. Layer-
wise linear networks provide a tractable framework for analysing 
internal representations and their role in transfer, generalization and 
interference32,98–100. While our main results are shown in this setting, we 
replicate key findings in ReLU networks (Supplementary Section 2 and 
Supplementary Fig. 5) and consider extending to other architectures 
an important direction for future work.

Inputs to the network were one-hot vectors to match the discrete 
task stimuli, with six unique inputs per task. Outputs were represented 
as Cartesian coordinates corresponding to the cosine and sine of the 
angles for summer and winter, to account for circular wrapping. Thus, 
the ANNs had 12 input units (representing the 6 stimuli per task) and 
4 output units corresponding to cos(summer), sin(summer) and 
cos(winter), sin(winter). In the results presented, networks had a hidden 
layer with 50 units, although findings were consistent across different 
hidden layer sizes (Supplementary Fig. 4). Networks were trained using 
online stochastic gradient descent (with learning rate η = 0.01). The 
model was trained using MSE loss between the true and predicted fea-
ture location (Cartesian coordinates) for the probed stimulus season:

L = 1
2 [(

̂xs,i − sin(θs,i))
2 + ( ̂ys,i − cos(θs,i))

2
] , (1)

where θs,i is the correct angle for stimulus s at the probed season i (winter 
or summer), and ̂xs,i and ̂ys,i are the outputs corresponding to the net-
work’s predicted Cartesian coordinates for stimulus s in season i. In other 
words, on each trial, only the summer or winter output pair—depending 
on which feature was probed—contributed to the loss. The unprobed 
outputs were not penalized. This output structure avoids forcing the 
network to resolve competing outputs in a shared space, allowing it 
instead to learn consistent structure between the outputs. On trials 
where human participants did not receive feedback (for example, winter 
responses for the test stimulus or winter responses during retest), no 
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gradient updates were performed. For interference patterns across a 
continuum between Near and Far conditions, see Supplementary Fig. 3.

Analyses of ANN representations
To investigate the task representations supporting transfer in the rich 
ANNs, we analysed activity at the hidden layer of the network using 
PCA. First, we assessed the dimensionality of the representations in 
the different networks. We took each network’s activity at the hidden 
layer when exposed to all inputs, separately after training on task A and 
task B. We calculated the number of principal components required 
to explain 99% of the activity variance in each case. This showed that 
the number of components doubled after training on task B in the Far 
condition, but remained consistent in the Near and Same condition 
(Fig. 2d).

To visualize these differences in geometry between conditions 
(Fig. 2f–h), we plotted the hidden representations of task inputs in the 
two-dimensional subspace defined by the first two principal compo-
nents of activity. For illustrative purposes, we trained a network on a 
randomly selected task A, and then trained it separately on the Same, 
Near and Far rule version of task B. We then performed PCA (n = 2 
components) on the network activity when exposed to all inputs (after 
full training). Projecting all task inputs onto this two-dimensional 
subspace revealed that, in the Same and Far conditions, the new task 
B inputs were mapped onto the same subspace, but not in the Far condi-
tion. To characterize the representational geometry of the two tasks 
in the different conditions, we computed the principal angle between 
task subspaces in all participant-matched networks. The principal angle 
is a standard measure of the alignment between two subspaces, with 
smaller angles indicating greater overlap and larger angles indicating 
orthogonality40–42. To compute the principal angle between task sub-
spaces in each network, we extracted the hidden layer activations in 
response to the set of task A stimuli, and the set of task B stimuli, after 
training on task B. Using PCA, we identified the two-dimensional sub-
space for the sets of stimuli belonging to each task, represented by 
their respective orthonormal bases ̂VA and ̂VB. To compute the principal 
angles between these subspaces, we performed a singular value decom-
position on the inner product matrix:

̂V
T
A ̂V

T
B = PAΣPT

B.

Here, Σ is a diagonal matrix, with diagonal elements corresponding 
to the cosines of the principal angles between the two subspaces. The 
first element of Σ corresponds to the largest singular value and is the 
cosine of the first principal angle:

θ1 = arccos(Σ[1, 1]).

We display the principal angles (θ1) between the task A and B sub-
spaces averaged across simulations in each condition in Fig. 2i.

Rich and lazy regimes in ANNs
We trained ANNs to converge on rich or lazy task solutions by manip-
ulating the scale of initial weights32–37,43,44,101,102. All network weights 
were initialized as random samples from Gaussian distributions with 
a mean of zero. Following previous work44, we define the rich regime 
as networks initialized with small embedding weights (σ = 10−3) and 
in the lazy regime large embedding weights (σ = 2). We present addi-
tional information about the performance of networks initialized with 
variances along this continuum in Supplementary Fig. 16. Because the 
lazy–rich distinction controls the structure of representations at the 
hidden layer (formed by the embedding weights), the readout weights 
must remain flexible to enable learning44. During lazy learning, this is 
what allows the network to extract rules from the high-dimensional 
representations in the embedding space. We therefore initialized the 
read-out weights with a fixed rich setting (σ = 10−3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The processed, anonymized human data and simulation data from this 
study are available via GitHub at https://github.com/eleanorholton/
transfer-interference. There are no restrictions on data availability, and 
all relevant files are provided in CSV format. No data with mandated 
deposition are included in this study.

Code availability
The code used for data analysis and modelling in this study is available 
via GitHub at https://github.com/eleanorholton/transfer-interference.
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