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In artificial neural networks, acquiring new knowledge often interferes
with existing knowledge. Here, although it is commonly claimed that

humans overcome this challenge, we find surprisingly similar patterns

of interference across both types of learner. When learning sequential
rule-based tasks (A-B-A), both learners benefit more from prior knowledge
when the tasks are similar—but as aresult, they also exhibit greater
interference when retested on task A. In networks, this arises from reusing
previously learned representations, which accelerates new learning at the
cost of overwriting prior knowledge. In humans, we also observe individual
differences: one group (‘lumpers’) shows more interference alongside better
transfer, while another (‘splitters’) avoids interference at the cost of worse
transfer. These behavioural profiles are mirrored in neural networks trained
intherich (lumper) or lazy (splitter) regimes, encouraging overlapping or
distinct representations respectively. Together, these findings reveal shared
computational trade-offs between transferring knowledge and avoiding
interference in humans and artificial neural networks.

Continuallearningis the ability to acquire multiple tasks in succession.
Learning tasks in sequence is challenging because new task acquisi-
tion may cause existing knowledge to be overwritten, aphenomenon
called catastrophic interference. Artificial neural networks (ANNSs)
trained with gradient descent are particularly prone to catastrophic
interference' . Their difficulties with continual learning are often coun-
terpointed with those of humans, who seem to be capable of accumulat-
ing and retaining knowledge across the lifespan. The computational
basis of continual learning in humans is a topic of active investigation*”,
and a consensus has emerged that task learning in humans and linear
ANNSs may rely on fundamentally different mechanisms’. Here, we
describe work that challenges this assumption.

Recent work has shown that catastrophic interference can be
counterintuitively worse when successive tasks are more similar to
each other®™°. When faced with similar tasks, ANNs tend to adapt
existing representations, rather than forming new ones. This allows for

better transfer (where learning one task accelerates learning of others),
but existing representations are corrupted, provoking heightened
interference. By contrast, when dissimilar tasks are encountered in
succession, ANNs adopt a different strategy, which involves forming
entirely new representations. This means that learning proceeds more
slowly, but networks suffer less frominterference®'*". In other words,
higher catastrophic interference can be a cost that accompanies the
benefits of transfer.

Although catastrophic forgetting in ANNs is often contrasted
withsuccessful continual learning in biological systems, thereis good
reasonto believe they might rely on common principles of generaliza-
tionandinterference. Inpsychology, the term‘retroactive interference’
refers to the phenomenon where new learning interferes with previ-
ous knowledge, analogous to catastrophic interference'>°. Cases of
retroactive interference, for example, in sequential recall tasks, have
alsobeen proposed to depend on task similarity’® . To take anintuitive
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example, language learners will find it easier to learn Italian after learn-
ing a similar Romance language (for instance, French compared with
Korean), but may begin misapplying Italian words in French as aresult.
In dual-task paradigms, where participants must perform two tasks
simultaneously, it is well established that cross-task interference is
higher for tasks with shared structure®®”, argued to be an intrinsic cost
of sharing neural representations across tasks**°. While these studies
suggest there may be similar trade-offs occurring in humans too, as far
asweare aware, no previous studies have systematically compared how
patterns of catastrophicinterferencerelate to transfer during continual
learningin humans and ANNs.

Here, we directly compare humans and linear ANNs performing
the same continual learning task, with a view to examining whether
transfer and interference are governed by analogous computational
principles. To investigate the fundamental computational principles
that govern transfer and interference during continual learning, we
adopted aminimalist modelling approach usinglayerwise linear neural
networks. We trained both classes of learners on two sequential tasks
(task A and task B) and then retested their knowledge of the first task
(task A). First, we studied the effects of task similarity by varying the
relationship between two task rules across three different groups of
subjects (Same, Near and Far rule conditions). For both humans and
ANNs, more similar tasksled to faster learning of task B (transfer), while
more dissimilar tasks resulted in lower interference from task Bwhen
retested ontask A.In ANNSs, by analysing the hidden layer representa-
tions, we were able to show the precise computational principles that
govern this effect. Consistent with previous work', we found that
networks encode similar tasks in shared subspaces, which leads to
interference; when they are sufficiently different however, networks
encode tasks in separate, non-overlapping subspaces, which eliminates
catastrophicinterference.

Alongside these phenomena, we observed substantial individual
differences consistent withacomputational trade-off between the ben-
efits of transfer and the avoidance of interference. Writing to afriend,
the naturalist Charles Darwin described two groups of taxonomists:
those who preferred to divide the botanical world into as many different
species as captured their unique properties, and those who focused on
commonalities, preferring to merge across the differences. Reflecting
onthesegroups, hewrote, ‘Itis good to have hair-splitters & lumpers™’.
In our study, we found a similar divergence in how people structured
new information. Some participants reused the same rule across all
stimuli (‘lumpers’), which allowed them to learn faster in the second
task, while incurring more interference when retested on the original
task. These participants were also better at generalizing to unseen
stimuli within a task, by applying their knowledge of the shared task
rule. Meanwhile, other participants were able to avoid interference,
but at the cost of worse transfer to new tasks and poor generalization
withinatask (‘splitters’). Intriguingly, this group was better at recalling
unique properties of the stimuli. These findings suggest thatatendency
to focus on generalization of shared features versus individuation of
unique features may reflect a meaningful axis of variation in human
learning, although further work is needed to determine the stability
of these tendencies across contexts.

We sought to understand these individual differences using our
modelling framework. We drew upon recent workinmachine learning
revealing that networks can solve the same task using fundamentally
different representations. Inso-called rich networks, inputs are encoded
in representations which reflect the low-dimensional structure of the
task. By contrast, so-called lazy networks rely on high-dimensional,
discriminable projections of the inputs, which form a basis for flexible
downstream computations but often generalize poorly®> . This transi-
tionfromthe ‘rich’to‘lazy’ regime can be driven by the scale of the initial
weights®***¥, We found that we could fully account for the individual
differences in human learning by assuming a mixture of rich and lazy
task solutions that favour generalization or individuation.

Together, these results point to key parallels between the
trade-offs governing transfer and interference in humans and ANNs
in continual learning settings. Inboth learning systems, learners who
benefit most from generalizing shared structure also demonstrate
the highest costs of interference. This balance is influenced both by
external variables such as task similarity and by differences in the initial
learning strategies.

Results

Humans and twinned linear ANNSs (collectively, ‘learners’) learned two
successive tasks (task A followed by task B) and were then retested on
task A (Fig. 1). Each task required learners to map six discrete inputs
(plants) onto positions onaring (locations onaplanet) intwo distinct
contexts (the seasons of summer and winter; Fig. 1a). Within each of
the two tasks, a consistent angle referred to as the ‘task rule’ defined
the relationship between summer and winter locations for any plant.
For example, within task A, each plant’s winter location might always
be 120° clockwise from their summer location (rule A =120°; Fig. 1b).
Learners were always probed on a plant’s summer location first, and
then its winter location after viewing feedback, allowing inference
about the rule thatlinked the seasons. Notably, for one of the six stimuli,
learners never received feedback on the winter location, allowing us
to measure generalization of the rule within a task.

After completing task A, learners were trained on task B, where
they learned to map a new set of six stimuli to their corresponding
summer and winter locations on the ring. Participants received no
indication that anew task had begun, aside from the fact that the task
B stimuli were novel. Learners were divided into three groups, corre-
sponding to three levels of similarity between the rule in task A (rule
A) and the rule in task B (rule B; Fig. 1c). Depending on the condition,
rule B was either identical to rule A (Same), shifted by 30° (Near), or
shifted by 180° (Far). For example, if the relationship between the
seasons in task Awas120°, it remained 120° for the new task B stimuli
inthe Same group, shifted to either 90° or 150°in the Near group, and
changed to300°in the Far group. The rules themselves were matched
across conditions (Supplementary Fig. 1). After training on task B,
learners were retested on the locations of task A stimuli—this time
receiving feedback only about their summer responses. This allowed
ustoinvestigate their performance of rule A at retest without feedback,
by analysing winter responses.

Defining transfer and interference

In theory, learners could apply their knowledge of rule A to the novel
stimuliin task B. This would manifest as using rule A to assign awinter
locationto atask B stimulus after receiving feedback about its summer
location. Consequently, if learners apply prior knowledge, the more
similar the task Brule, the better we expectinitial performance ontask
B. Accordingly, we evaluate transfer in both humans and networks as
the difference between the average winter accuracy for task A stimuli
during their final presentation and the average winter accuracy for
task B stimuli at their first presentation (Fig. 1d). Because we expect
transfer to decrease with decreasing rule similarity, we expect the low-
est transfer in the Far group.

Conversely, we predicted that successful transfer would come at
the cost of greater interference from the new task. If Near group par-
ticipants benefit more fromtransfer, this interference would manifest
as greater use of rule B when retested on task A stimuli. Because no
new rule learning occurs during retest, we could formally quantify
interference as the probability of using rule B on return to task A. To
measure this, we fit a mixture of von Mises distributions® centred on
rule A and rule B to learners’ rule responses (the offset between the
winter response given, and the feedback for summer on the imme-
diately previous trial). Higher interference corresponds to a higher
probability weight of responding with rule B during retest of task A
(Fig. 1d). As such, we measure interference from rule B in the Near
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Fig.1| Task design. a, The task consisted of mapping plant stimuli to their
locations onacircular dial, across two contexts (summer and winter).
Participants always responded with the probed plant’s summer location first, and
thenits winter location, receiving feedback after each response during training.
b, Withintask A, the relationship between each plant’s location in summer

(white circle) and winter (black circle) corresponded to a fixed angular rule (for
example, 120° clockwise) that was randomized across participants. ¢, In task B, all
participants learned to map a new set of stimuli to their respective summer and
winter locations. However, the rule defining the relationship between seasons
differed across groups of participants. In the Same condition, the seasons for
task Bwere related by the same rule previously learned in task A; in the Near
condition, the rule shifted by 30°; in the Far condition, the rule shifted by 180°.

d, Alllearners were trained on task A (120 trials), then task B (120 trials), and then
retested on task A without feedback for winter. Transfer is defined as the change
inwinter accuracy from the final block (that is, one full stimuli cycle) of task A,
to the first block of task B. If participants learn the rule, transfer should be better
when the task B rule is more similar. Interference is defined as the probability of
updating to the task B rule during retest of task A. For each participant, we trained
atwinned neural network on the same stimuli sequence order and task rules.

e, Networks consisted of feed-forward two-layer ANNs trained to associate sets of
unique inputs (one-hot vectors; separate sets for each task) with the Cartesian
coordinates of the winter and summer locations. Interference and transfer icons
from OnlineWebFonts under a Creative Commons license CC BY 4.0.

and Far conditions where the rules change between tasks, but not in
the Same condition where by definition the rules remain constant
throughout. Parameter recoveries and model validation can be found
inSupplementary Section 4.

ANN studies

Toenable direct comparisons between humans and models, eachhuman
participant was paired with atwinned neural network that followed the
exact same trial schedule—receiving the same ordering of stimuli and
feedback asthat participant. Inthe ANN experiments, we used two-layer
feed-forward linear networks (Fig. 1e), allowing us to study how the
representations supporting rule learning emerge through gradient
descent®**, During the task A and task B learning phases, networks
were trained to map one-hot vectors representing the discrete input
stimuli onto Cartesian coordinates for the winter and summer locations
on the ring. Crucially, network weights were not reset between tasks
to allow us to study continual learning. Similarity between task A and
task B was manipulated identically as for humans, by varying the rule
relating the target coordinates in summer and winter. To mirror the
continuous, fully informative feedback received by humans, we trained
networks with trial-wise gradient updates, using amean squared error
(MSE) loss. During retest of task A, model weights were updated after
summer trials, but not winter trials, analogous to participants receiving
feedback only for their summer responses. We chose two-layer linear
networks as the simplest architecture capable of learning transferable
shared structurein this task. By contrast, single-layer regression models
trained on unique (one-hot) inputs cannot share weights across stimuli

and arethereforeincapable of transfer. Because the taskis linearly solv-
able, linear networks are the most parsimonious choice for studying
the representational dynamics supporting transfer and interference.
However, we also confirminsupplementary analyses (Supplementary
Section 2.1and Supplementary Fig. 5) that the key behavioural effects
alsoholdin ReLU networks, supporting the robustness of our findings
beyond linear networks.

ANNs show higher transfer at the cost of greater interference
when learning similar tasks

AllANNs achieved near-zero training loss on both task A and task B by
the end of their respective training phases across all conditions
(£ <1073;Fig.2a-c).

However, we observed that transfer and interference differed
across levels of task similarity (Same, Near and Far rule conditions).
First, we focus on transfer. In Fig. 3e, we show that initial accuracy for
winter responsesintask Bisunimpairedinthe Same condition, declines
moderatelyinthe Near condition and drops the mostin the Far condi-
tion (Same > Far: £(202) = 605.79, P< 0.001, d = 85.25, 95% confidence
interval (CI) 0.94-0.94; Near > Far: £(200) = 444.95,P < 0.001,d = 62.93,
95% C10.80-0.81; Same > Near: £(202) = 79.43,P < 0.001,d =11.18,95%
Cl1 0.13-0.14). This shows that, despite the novel inputs during task
B (one-hot vectors that were not seen during task A), networks can
capitalize on their prior training, showing greater transfer when the
task rules are more similar.

Next, we examined interference, measured as the probability of
incorrectly applying rule Buponreturnto task A. After training onboth
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Fig. 2| Transfer and Interference in ANNs. ANNs were trained on participant-
matched trial sequences (one network per participant). a-c, Learning curves
for networkin the three conditions. Each network is trained sequentially on
task A followed by task B (full supervision with mean-squared error loss), and
thenretested on task A. During retest, model weights are not updated after
winter trials (analogous to participants receiving feedback only for summer
but not winter stimuli). a shows networks trained in the same condition (tasks
withidentical rules), b shows networks trained in the near condition (tasks
with similar rules) and c shows networks trained in the far condition (tasks with
opposite rules). Dashed lines show task change points, showing the introduction
oftask B stimuliand the return to task A stimuli, respectively.d, The number

of principal components needed to capture 99% variance of the activity at

the network’s hidden layer when exposed to all inputs. This is shown split by

condition, both after training on only task A (purple) and after training on task
Baswell (green). e, Visualization of the two-dimensional representation of task
stimuli at the network’s hidden layer, after training on task A stimuli. PCA (with
two components) was performed on the network’s hidden layer activity when
exposed to allinputs. f, Visualization of hidden layer stimuli representations
after training on task B in the Same condition. g, The same as f after training the
network to perform task Bin the Near condition. h, The same as fafter training
the network to perform task Bin the Far condition (see Supplementary Fig. 2
for additional visualizations of subspaces). i, Principal angles between task
subspaces in the Same, Near and Far conditions. PCA (n = 2 components) was
performed on ANN hidden layer activity for stimuli from task A versus task B,
and the angle between subspaces computed. Larger angles indicate greater
orthogonality between subspaces.

tasks, networks in the Near condition applied rule B to task A stimuli,
showing truly catastrophic forgetting of the initial rule (Fig. 3j). By
contrast, networks trained in the Far condition showed nointerference:
they were able to successfully return to using rule A.

Why would networks trained in different similarity conditions
show such different patterns of interference? An initial clue comes
from observing the learning curves as the networks were trained on
task B. In the Same and Near groups, task B training resulted in rapid
exponentially decreasing loss (Fig. 2a,b), as learning unfolds along an
already established subspace. By contrast, loss curvesin the Far group
exhibited aninitial plateau (Fig. 2c), appearing qualitatively similar to
the curves observed when the networks were initially learning task A.
One possibility is that this plateau occurs during the weight modifica-
tions that allow for learning to unfold in a new subspace.

Totest this hypothesis, we examined the dimensionality of hidden
representations over the course of learning, using principal compo-
nent analysis (PCA). The dimensionality did not change as a result
of learning task B in the Same and Near conditions (that is, the same
number of components could explain 99% of variance in the hidden
layer representation of all inputs). By contrast, the dimensionality
doubled after learning task Bin the Far condition, supporting the idea
that anew subspace was formed (Fig. 2d). Indeed, visualization of the
hidden representationsin these networksimplied thatinthe Same or
Near condition the network reused the same subspace across the two
tasks (Fig.2e-g). However, networks trained on highly dissimilar rules
in the Far condition learned the new task in a separate, orthogonal
subspace (Fig. 2h).

Finally, we formally quantified the relationship between the sub-
spaces each network used torepresent the two tasks. We measured the
principal angle between the two-dimensional subspaces encoding task
A stimuli and task B stimuli after each network was fully trained*’*

(Fig. 2i). In networks learning the Same or Near tasks, this angle was
0°, indicating use of the same subspace across tasks. By contrast, the
principal angle was 90° in networks trained inthe Far condition, indicat-
ing use of an orthogonal subspace for the new task. This explains the
slower learning of task B but preserved performance of task A at retest.

Human studies

Next, welooked at whether humans showed similar patterns of transfer
andinterference as afunction of task similarity. For the human experi-
ments, werecruited separate groups of healthy online participants for
each condition, across independent discovery and replication studies
(discovery sample: Near, N =50, Far, N=50, Same, N = 52; replication
sample: Near, N=51, Far, N=51,Same, N=52).

Humans also show higher transfer but more interference when
learning similar tasks

Human participants were able to attain high accuracy in this study
across all conditions (see Supplementary Fig. 8 for winter and summer
accuracy over the course of learning; average winter accuracy in final
block of task A; Same: mean (M) = 0.81, s.e.m.=0.12, Near: M =0.85,
s.e.m.=0.10, Far: M= 0.82, s.e.m. = 0.11; average winter accuracy in
finalblock of task B; Same: M = 0.84,s.e.m.=0.13,Near: M = 0.87,s.e.m.
=0.14, Far: M=0.82, s.e.m. = 0.16). However, patterns of transfer and
interference followed the same trends observed in neural networks,
depending on task similarity.

First, we examined transfer among human participants. When
introduced to the new stimuliin task B, participants in the Same condi-
tion were able to infer the correct winter locations by reapplying the
previously learned rule, shown by their response errors clustering
around zero (Fig. 3a). A similar pattern is observed in the Near condi-
tion, although response errors are systematically biased toward the

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02318-y

<E> Transfer Train task A —_ Train task B —_ Retest task A [
«
* Ak
a Rule A Rule B b c d falalad e
30
55 0+ ECE
- e = %
S) N 53 oA = 3
© 0 @ 3 s g8
7 ~x ®© g5 | £ 3 -0.5 4
| i = -
=
0 ‘rrrmf‘ ‘m’-rnHT B ﬂJH b naipe ‘ﬂﬂmm‘wﬂﬂﬂmtﬂ
-180 0o 180 -180 0o 180 -180 0] 180 10 1.0
Mean participant error (°) Mean participant error (°) Mean participant error (°) ' T T T —
(first block B) (first block B) (first block B) Same Near Far Same Near Far
/ . .
))) (( Interference Train task A - Train task B —_ Retest task A .
‘ 2
f g h i « H
* kK
30
1.0 1.0
£ 20 g 3
3 5 @
° o L@ £a
2 _ S B
,§ > 0.5 £3 0.5
0 : ] U oo g Q 74
-180 0] 180 -180 0o 180 -180 0o 180 ° g
[2'4
Mean participant error (°) Mean participant error (°) Mean participant error (°) . &
0 - 0
Training Training Training
T — T
Retest Retest Retest Near Far Near Far

Fig. 3| Patterns of transfer and interference. a-e, To study transfer, we examine
the point when participants switch from task A to task B, encountering new
stimuli. a, Histograms of the mean winter error across participants during

the first block of task B in the Same condition (where the rule that links winter
to summer stays the same). Purple and green notches mark expected error if
applying the task A or task B rule, respectively. b, The same as a for the Near
condition, where the rule shifts by 30°. While Near participants were randomly
allocated toatask Brule +30° or -30° from the task A rule, here we flip the sign
of errors for -30° participants for consistency, to visualize the biasing influence
ofthetask Arule. c, The same as a for Far participants, who experience anew
task Brule that is 180° from their previous task A rule. d, Transfer is defined

as the cost of switching to the new task—the change in accuracy between the
final winter responses for the six task A stimuli and the first winter responses
for the six task B stimuli. Circles indicate mean, error bars show s.e.m. across
the participant sample (Same N =103, Near N=101, Far N=101), and colours
correspond to condition. Pvalues correspond to results of one-sided ¢-tests
(Same >Far: t(202) =9.48,P<0.001,d =1.33,95% C1 0.19-0.29; Near > Far:
t(200)=6.63,P<0.001,d = 0.93,95% C10.13-0.23). ***P< 0.001. e, Transfer in

ANNSs trained on participant-matched schedules. f-j, To study interference, we
examine how participants perform when returning to task A after completing
task B. f, Histograms of retest error on task A (coloured) overlaid on task A
training error (grey) in the Same condition. Little change suggests minimal
interference. g, The same as ffor the Near condition. A shift towards rule B
indicates interference from the recently learned task. h, The same as ffor the Far
condition. Inthis case, very few participants respond using rule B during retest.
i, Interference is quantified as the probability of using rule Bwhen retested on
task A, modelled using a von Mises mixture where lindicates full use of rule B
and O indicates use of rule A. Circles indicate mean, error bars show s.e.m. across
participants (Near N=80, Far N=94; participants who failed to learn task B were
excluded), and colours correspond to condition. Pvalues correspond to results
of one-sided t-test (Near > Far: t(172) =3.44,P< 0.001,d = 0.53,95% C1 0.08-0.31).
***P<(0.001.j, Interference in ANNs trained on participant-matched schedules.
Colours correspond to training condition. Note that human data are aggregated
across the discovery and replication samples (for data plotted by sample, see
Supplementary Fig. 6). Interference and transfer icons from OnlineWebFonts
under a Creative Commons license CC BY 4.0.

previously learned rule (Fig. 3b). By contrast, errors in the Far condi-
tion are widely distributed, indicating that participants were unable to
reuse their previous rule, instead learning the new task from scratch
(Fig. 3c). Similar to ANNs, human participants in the Same and Near
groups therefore showed greater transfer to task B than in the Far
condition (Fig. 3d; one-way analysis of variance for effect of condition
on transfer; discovery sample: F(2, 148) =18.69, P< 0.001, = 0.20;
replication sample: F(2,151) = 29.34, P< 0.001, 7= 0.28. A accuracy
in the Far condition was significantly lower than the Near and Same
condition; Far <Same one-sided t-test: £(99) = 6.12, P< 0.001,d =1.23,
95% CI1 0.15-0.29 (discovery sample); £(101) = 7.23, P< 0.001, d =1.43,
95% Cl1 0.19-0.33 (replication sample); Far < Near one-sided ¢-test:
t(98) =3.85,P<0.001, d=0.78, 95% CI 0.07-0.23 (discovery sample);
t(100) =5.52,P<0.001,d=1.10,95% C10.13-0.28 (replication sample).
This shows that participants were able to successfully infer the task
rules, and benefit from transfer to task B when rules remained simi-
lar. Importantly, the pattern of switch costs that we observe is better

explained by participants transferring their previous rule to the new
task B stimuli, rather than alternative behavioural strategies such as
responding randomly or repeating their summer location feedback
(Supplementary Fig. 9).

Next, we measured interference from task B when participants
were retested on task A. Our theory concerns interference occurring
as aresult of new learning, so participants who failed to learn task B
were excluded frominterference analyses (14% participants excluded).
Participantsinthe Same condition showed response errors tightly clus-
tered around zero, reflecting consistent use of the original rule, which
remained unchanged throughout task B (Fig. 3f). However, many par-
ticipantsin the Near condition shifted towards applying rule Bat retest
(Fig.3g), while participantsin the Far condition largely maintained rule
Arather than shifting to rule B (Fig. 3h). Quantifying this formally, we
found that Near group participants showed higher interference after
learning task B compared with those in the Far condition—in other
words, they were more likely to misapply rule B during retest (Fig. 3i;
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Fig. 4 |Individual differences in transfer and interference. a, In the Near
condition, interference at retest is bimodally distributed. Participants in the
Near group were classified into splitters (those with low interference from task
B) and lumpers (those with high interference from task B). b, A histogram of
allwinter retest errors for splitters (light blue) and lumpers (dark blue). Lines
show the posterior model fits, computed using the average concentration (k)
and mixture weight (i7) parameters across participants in each group.c-h,On
theleft (in blue), we plot behavioural data from the splitters and lumpers. On
theright (ingrey), we plot data from ANNs trained under alazy learning regime
(forming unstructured, high-dimensional task solutions), versus trained under
arichlearning regime (forming structured, low-dimensional task solutions). In
eachplot, circles show mean metrics in each group, dots show individual data
points and error bars show s.e.m. (splitters: N =42, lumpers: N =38). Pvalues
correspond to results of two-sided ¢-tests. ¢, Interference among splitters and
lumpersis plotted for illustrative purposes only (because this metric determines
the classification), for comparison with interference inlazy and rich ANNs (ANNs:
t(200) =32.8,P<0.001,d = 4.64,95% C10.75-0.84).d, Transfer performance in
the groups, as defined throughout as the change in winter accuracy between

the final exposure to task A stimuli and the first exposure to task B stimuli
(humans: ¢(78) =3.95,P< 0.001, d = 0.89, 95% C1 0.08-0.23; ANNs: ¢(200) = 20.97,
P<0.001,d=2.97,95%C10.24-0.29). e, Generalization accuracy is the average
winter accuracy for the test stimulus in task A, for which feedback about winter
iswithheld throughout. Because participants only receive feedback about its

summer location, they must infer the correct winter location by generalizing
their knowledge of the task A rule (humans: ¢(78) = 2.74, P= 0.008, d = 0.62,95% CI
0.03-0.21; ANNs: £(200) =12.72, P< 0.001, d =1.80, 95% C1 0.30-0.40). f, Average
accuracy for summer responses, which must be remembered for each stimulus
separately (in contrast to winter responses, which can be inferred by applying
the rule to the summer feedback). This requires participants to discriminate

the unique stimuli. ANN performance is shown for the first 120 trials of task A
training, to match the length of human training. For full accuracy trajectories
over time, including later stages of training, see Supplementary Fig. 15 (humans:
t(78) =3.40,P<0.001,d = 0.76,95% C1 0.03-0.11; ANNs: ¢(200) = 3.60,d = 0.51,
P<0.001,95% C10.02-0.07).g, At the end of the study, participants were

asked to recall when they saw each stimulus for the first time (at the beginning
of the study, or halfway through). In other words, this reflects the ability to
explicitly report the onset of unique task stimuli (humans only: £(78) = 3.69,
P<0.001,d=0.81,95% Cl 6.5-22.8). h, Representational similarity between task
Aand task B stimuliin ANNs, quantified as the principal angle between their
respective hidden layer subspaces after task B training. Rich networks collapse
the representations onto the same subspace, while lazy networks retain greater
distinction between representations (ANNs only: £(200) =125.50, P < 0.001,
d=17.75,95% C173.4-75.8). *P< 0.01, **P < 0.001 (c-h). Credit: interference

and transfer icons from OnlineWebFonts under a Creative Commons license
CCBY 4.0.

p(rule B)in Near >Far, one-sided t-test; t(86) = 2.56, P= 0.006,d = 0.55,
95% C10.04-0.37 (discovery sample); t(84) =2.27, P=0.013,d = 0.50,
95% C10.02-0.35 (replication sample); see Supplementary Section 4
for further detail on model validation and parameter recoveries, and
Supplementary Fig. 7 for effects on retest accuracy).

Taken together, these results support the idea that humans and
neural networks show similar patterns of transfer and interference,
with the same systematic dependency on task similarity. In neural
networks, we can see that learning tasks of intermediate similarity
promotes shared representations, manifestingin higher transfer across
tasks at the cost of greater interference. By contrast, learning highly
dissimilar tasks leads to less transfer but lower interference between

tasks. We find these patterns of trade-offs between the benefits of
transfer and avoidance of interference are preserved across the two
learning systems.

Individual differences in transfer and interference

Although participants learning similar tasks generally showed more
interference than those learning dissimilar tasks, this pattern was not
universal: many individualsinthe Near group showed little tonointer-
ference. In fact, interference weights in this group were bimodally
distributed (Fig. 4a), suggesting the presence of two distinct learning
strategies. Some individuals appeared to overwrite rule A with rule
B, while others returned to rule A, effectively avoiding interference
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(Fig. 4b). Inthe context of our theory, this naturally leads to the ques-
tion of whether these individual differences are also characterized by
atrade-off between benefitting from transfer and avoiding interfer-
ence. We predicted this may reflect differences in how participants
approached thetask structure, with some participants merging across
tasks based on shared structure (lumpers), and others focusing on the
differences between stimuli (splitters). To study this phenomenon fur-
ther, we used amodel-based approach to classify lumpers and splitters.
Participants whose responses during retest of task A were best fit by
rule Awere categorized as splitters, while those whose responses were
best fit by rule B were categorized as lumpers. In our cohort, 47.5% of
Near-group participants were lumpers.

If the increased interference observed in lumpers (Fig. 4c, left)
arose from a focus on shared structure, we would expect lumpers
to demonstrate better transfer compared with splitters. Indeed, we
found that lumpers were better at switching to task B, benefitting
from similarities between the two tasks (Fig. 4d, left; transfer: splitters:
M=-0.21,s.e.m.=0.03, lumpers: M=-0.06, s.e.m. = 0.03; two-sided
t-test: £(78) =3.95,P < 0.001,d = 0.89,95% C10.08-0.23). In addition, if
lumpers were good at capitalizing on shared task structure, we would
expect lumpers to successfully generalize the rule to untrained stimuli
within task A. To test this, we leveraged a feature of our experimental
design: for one ‘test’stimulusintask A, feedback was not provided for
winter responses, allowing us to measure generalization. We found
that lumpers indeed exhibited higher accuracy for the test stimulus,
demonstrating greater within-task generalization (Fig. 4e, left; split-
ters: M=0.69,s.e.m.=0.04, lumpers: M= 0.81,s.e.m.=0.03; two-sided
t-test:t(78) =2.74,P=0.008,d = 0.62,95% C10.03-0.21). In other words,
individuals who experienced more interference were better at extend-
ing theirknowledge to new situations—both whenlearning task Bas well
aswheninferring untrained responses within atask. Thisis consistent
with our theory that lumpers are relying more on shared representa-
tions during learning.

Could lumpers be performing better on these metrics simplyasa
result of higher task engagement? If this were the case, we would expect
them to show generally higher accuracy across the board. To address
this possibility, we assessed participants’ accuracy for the ‘summer’
response during task A—the initial phase of the experiment. Due to
the sequential nature of each trial (participants are always probed on
summer before winter), summer accuracy reflects the ability to recall
the unique, memorized location of each stimulus, whereas winter
accuracy canbeinferred by applying the rule to the summer location.
We found that lumpers—while achieving higher accuracy in transfer
and generalization—were significantly worse than splitters at remem-
bering the unique summer positions (Fig. 4f, left; splitters: M= 0.671,
s.e.m. =0.015; lumpers: M=0.600, s.e.m. = 0.015; two-sided t-test:
t(78) =3.40, P=0.001, d=0.76, 95% CI1 0.03-0.11). Notably, splitters
retained their summer accuracy advantage over lumpers throughout
the entire experiment, including during task Band the Aretest phases
(Supplementary Fig. 15). This indicates that splitters were not merely
less engaged inthe task, because they performed better than lumpers
atremembering summer locations. Instead, one possibility is that they
relied on a memorization-based strategy that prioritized memoriz-
ing the correct locations, rather than learning to apply the generaliz-
able rule. Consistent with this interpretation, response precision at
retest (quantified by the concentration parameter k) was significantly
lower in splitters than lumpers (Supplementary Fig. 14d; two-sided
t-test: t(78) = 2.83,P=0.006,d = 0.62,95% Cl 4.6-29.4; Mann-Whitney:
U=1,098.0,P=0.004), but nontheless splitters achieved higher accu-
racy at retest (Supplementary Fig. 14e; two-sided t-test: ¢(78) = -1.80,
P=0.076,d=0.40, 95% CI -0.01 to 0.97; Mann-Whitney: U= 512.0,
P=0.006). This is consistent with lumpers performing precise but
systematically biased responses (applying the task B rule), while split-
ters relied more on memorized mappings fromtask A, leading to more
variable but less biased responses.

Next, we asked whether these different strategies related to par-
ticipants’ temporal memory of the stimuli. At the end of the study, we
presented participants with each stimulus independently and asked
themtoreport whether they had originally seenthe stimulusin the first
or second half of the study (task A or task B). We found that lumpers
were worse at explicitly reporting this temporal separation, consistent
withour theory that lumpers merged representations of stimuliacross
tasks (Fig.4g; splitters: M=90.2%,s.e.m.=1.9, lumpers: M =75.5%,s.e.m.
=3.6, two-sided t-test: £(78) = 3.69, P < 0.001,d = 0.81, 95% C1 6.5-22.8).
Given thatrecall accuracy was clustered near the upper boundary, we
verified the group difference using a mixed-effects logistic regres-
sion. This robustness check confirmed that lumpers were worse at
categorizing the stimuli by their temporal separation (=1.35, s.e.m.
=0.38,z=3.57,P<0.001). Finally, we verified that all results reported
above remain unchanged after excluding participants best fit by a
model capturingrandom responding, supporting our claim that these
behavioural patterns capture true differences in strategy rather than
noise (see control analyses in Supplementary Section 5.2).

Taken together, these results suggest that participants differed
in their tendency to learn the task by focusing on generalization of
shared structure or memorization of the unique features of stimuli.
Crucially, these individual differences in strategy were underpinned
by the same fundamental trade-offs: individuals who benefitted more
fromgeneralizing shared structure alsoincurred greater interference.

Strategy differences can be captured by ANNSs trained inrich or
lazy regimes

Next, we investigated whether the individual differences in transfer
and interference observed in humans could be captured within our
connectionist framework. Neural networks can solve the same task
with minimal training error while relying on fundamentally differ-
ent internal representations of stimuli. In the so-called rich regime,
networks encode inputs using representations that reflect the task’s
underlying structure and dimensionality. By contrast, networks in the
lazy regime leverage the initial, random projections of inputs, forming
high-dimensional representations that facilitate individuation but
are independent of the task structure®*~***** Because individual dif-
ferences within the Near group were not driven by differences in task
structure or engagement, we hypothesized that lumpers and splitters
might be captured by networks trained in the rich and lazy learning
regimes, respectively. For example, prior work has shown that rich
networks generalize better than lazy networks****. Awell-established
method for guiding networks to form rich or lazy representations is
by varying the scale of initial weights®****. While our previous simu-
lations used small initial weights, promoting the formation of rich
structured representations, we reasoned that training a mixture of
networksinboththerichandlazyregimes could capture the spectrum
of individual differences in transfer, generalization and interference
observed in human learners.

As hypothesized, we found that rich and lazy networks mirrored
many of the behavioural differences observed inthe lumpers and split-
ters, respectively. First, rich networks exhibited greater interference
from learning task B (Fig. 4c, right; lazy: M= 0.20, s.e.m. = 0.02, rich:
M=1.0,s.e.m.=<0.01, two-sided t-test: £(200) = 32.8,P < 0.001,d = 4.64,
95% C10.75-0.84). Second, they showed superior transfer performance
when task B was introduced (Fig. 4d, right; lazy: M=-0.43, s.e.m. =
0.012, rich: M=-0.17, s.e.m. = 0.001, two-sided ¢-test: £(200) =20.97,
P<0.001,d=2.97,95% Cl1 0.24-0.29). Third, rich networks demon-
strated better generalization to the held-out test stimulus (Fig. 4e, right;
lazy: M=0.59, s.e.m. =0.03, rich: M= 0.94, s.e.m. = 0.003, two-sided
t-test: £(200) =12.72,P < 0.001,d =1.80,95% C10.30-0.40). Fourth, rich
networks also showed significantly lower summer accuracy than lazy
networks during task A (Fig. 4f, right; lazy: M= 0.690, s.e.m. = 0.008;
rich: M= 0.646,s.e.m.=0.009; two-sided ¢-test: t(200) = 3.60,d = 0.51,
P<0.001,95% Cl0.02-0.07). This effect is clearest in the early stages
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of learning; specifically, we computed ANN performance over the first
120 trials of task A training, to match the training length experienced
by human participants (for a full breakdown of accuracy trajectories
overtime,includinglater stages of learning, see Supplementary Fig.15).

Finally, we turn to the result that splitter participants were sub-
stantially better at remembering the onset of each stimulus—that is,
whether a stimulus was first encountered in training on task A or task
B.This ability to explicitly distinguish when a stimulus was introduced
depends on maintaining separable representations of the two tasks.
To test whether representational compression differed between rich
and lazy ANNs, we measured the degree of overlap between task Aand
task B stimuli hidden layer representations after task B training, using
the principal angle. In rich networks, the task subspaces were nearly
aligned (mean principal angle 0.49°,s.e.m.=0.006), whereas the first
two principal components in the lazy networks were near orthogonal
for the two tasks (mean principal angle 75.10°, s.e.m. = 0.59), with
a highly significant difference between groups (Fig. 4h, two-sided
t-test: t(200) =125.50, P< 0.001, d =17.75, 95% C1 73.4-75.8). These
findings provide arepresentational-level explanation for the temporal
memory differences observed in humans: possibly, participants who
compressed information across tasks (thatis, lumpers) suffered when
required to recall temporally specific information about task stimuli,
justasrich networks collapsed their task representations.

Overall, these analyses support our hypothesis that patterns of
transfer and interference systematically depend on whether learners
use shared representations. In particular, in therichregime, represen-
tations of stimuliin the neural networks are structured along ashared
low-dimensional manifold, leading to high interference, transfer and
generalization. By contrast, the lazy regime utilizes disjoint hidden
representations, resultingin lower interference, transfer and generali-
zation. Notably, both learning regimes support successful acquisition
of both tasks, suggesting that differences in representation may go
unnoticed when assessing only final performance without the inclusion
of held-out test stimuli or periods of retest after new learning. These
patterns characterizing the different task solutions within the Near
group reflect the same fundamental trade-off: sharing representations
across tasks brings greater transfer at the cost of higher interference.

While our focus has been on comparing human strategies withrich
and lazy learning regimes, several other representational solutions
are known to mitigate interference in continual learning. To explore
this broader landscape, we conducted simulations using networks
trained with three commonly studied interference-mitigation strate-
gies: elastic weight consolidation, replay and modular architectures
(Supplementary Section 6). Because splitters avoided interference but
failed to generalize within task, their behaviour most closely resembled
lazy networks, suggesting a high-dimensional task solution akin to
memorization over other forms of interference mitigation such as
replay (Supplementary Figs.17 and 18).

Discussion

This Article makes three primary contributions. First, we show that
humans learning structured tasks in short succession face a trade-off
between transferring knowledge across tasks and avoiding interference
on previous tasks. This trade-off is shaped both by global properties,
such asthe similarity between successive tasks, and by individual differ-
encesinthesolutions peoplelearn. Second, we show this behavioural
patternclosely parallels predictions from linear neural networks, which
exhibitatrade-off between sharing and separating task representations
during continual learning. Following our findings in humans, we find
this balance in linear neural networks is influenced both by intertask
similarity and the properties of the initial task solution. Finally, we dem-
onstrate thatindividual differences inthe strategies people learn give
rise to consistent and complementary performance profiles, favouring
either generalization across shared task structures or discrimination
of unique task properties.

Acrossboth humansand ANNs, learning more similar tasks led to
greater transfer but at the cost of higher interference. Consistent with
previous literature'®, we observed that ANNs solved similar tasks by
repurposing existing representations, facilitating faster learning but
corrupting prior representations. By contrast, learning orthogonal
tasks encouraged the formation of separate representations, pre-
venting interference. This aligns with a growing literature in machine
learning showing that catastrophic forgetting can be mitigated by
encouraging networkstolearnin orthogonal subspacesin more com-
plexsettings*™*°. Machine learning methods differ inhow they impose
subspace separation: for example, Duncker etal.”” proposed a continual
learning algorithm that encourages networks to organize dissimilar
task dynamics into orthogonal representational subspaces, while
others impose hard task boundaries using precomputed orthogo-
nal projection matrices (for example, ref. 46) or gradient-penalty
methods*. While our results are grounded in simple linear networks,
animportant direction for future work is to investigate whether the
principles we observe also hold in deeper, nonlinear networks usedin
modern artificial intelligence systems.

In our setting, linear networks exposed to orthogonal rules in
the Far condition naturally developed orthogonal subspaces over the
course of learning, without any architectural constraints or additional
loss terms. This demonstrates that orthogonal representations can
emerge spontaneously when the meta-statistics of the task struc-
ture support them. While we observe a similar behavioural patternin
humans, we emphasize that the emergence of orthogonal representa-
tions in the human brain remains a theoretical prediction, pending
empirical confirmation via neural recordings.

While neural networks provide a useful computational framework
for studying learning, they are not biological brains. Our approach
treats them as tools to study general principles of continual learn-
ing rather than assuming them to be analogues of human cognition.
However, the observed trade-offs between sharing and separating
representations during learning align with broader theories of task
switching in humans®®?>°°!, and orthogonal neural representations
are known to mitigate task interference in biological systems***432-2,
Arecent relevant study in mice®® demonstrated that individual differ-
encesininterference during continual learning were correlated with the
degree of orthogonalization in neural representations, underscoring
the biological relevance of subspace separationin maintaining memory
stability. Such partitioning could, in principle, be implemented bio-
logically via mechanisms such as synaptic consolidation®* or neural
pruning®, which aim to protect task-relevant parameters by selectively
reducing plasticity. While our study remains agnostic about the precise
biological substrates, we view these mechanisms as complementary
to our representational framework, offering potential routes by which
thebrain could achieve separation of task representations.

Despite finding a general trend that human learners exposed to
two similar tasks experienced more interference, this was not the case
for everyone. Closer examination of learners in the Near group who
avoided interference revealed two distinct approaches to continual
learning. Lumpers leveraged shared structure across tasks, enabling
better generalization and transfer but suffering more interference.
Splitters, by contrast, exhibited reduced interference, but this came at
the cost of poorer generalization within a task and weaker transfer to
the second task. This distinction was mirrored in ANNs trained under
rich versus lazy regimes, with low-dimensional, task-compressed
(rich) solutions resembling lumpers, and high-dimensional,
task-agnostic (lazy) solutions resembling splitters. Our simulations
show that interference can be mitigated even when learning simi-
lar tasks, if the network adopts high-dimensional solutions. This
reveals afundamental trade-off: while compressed, low-dimensional
representations support efficient generalization and downstream
transfer®**®©"%° they are also more vulnerable to interference when
reused across tasks.
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Although these patterns suggest similar computational con-
straints across systems, there are various limitations to our inter-
pretation of these individual differences. First, while rich and lazy
networks serve asacomputational proxy for these different strategies,
their biological relevance remains uncertain. There is no direct bio-
logical counterpart for the changes in initial weight scale that lead to
these varying representations, and further work would be required to
establish that the final representations supporting performance bear
similarities across the two groups of humans and ANNs*.

Asecond limitationis that, without neural data, we cannot deter-
mine how tasks are represented in the brain across the two groups,
even if their behavioural patterns suggest underlying differences in
strategy. Previous neural recordings have suggested that the brain
may simultaneously use both rich and lazy representational schemes
in different regions: early sensory areas exhibit high-dimensional,
task-agnostic codes resembling lazy learning, while higher-order
areas such as posterior parietal cortex contain lower dimensional
task-specific representations**’°. These findings underscore the chal-
lenge of associating human behaviour with a single form of representa-
tion, but suggest that comparisons at the level of specific brain regions
may also be informative. Future neuroimaging studies could compare
the neural representations of lumpers and splitters in our sequential
learning paradigm to investigate differences in both dimensionality
and localization of task representations across the brain.

Athirdlimitationis thatit remains unclear how far the distinction
between splitters and lumpers generalizes beyond our task setting.
Our classification was based on behavioural patterns of interference,
and although this allowed us to predict a rich range of independent
behavioural metrics, future work could strengthen the basis of this dis-
tinction by introducing anovel task to assess whether the classification
generalizes beyond the current setting. Similarly, alternative model
parameterizations could potentially provide a closer fit to the splitter
and lumper response distributions, offering complementary perspec-
tivesonthe behavioural distinctions observed in our task. Inaddition,
it would be interesting to explore parametric analyses of individual
differences using a continuous measure of network richness. Recent
theoretical work® provides a principled framework for understanding
the variation between rich and lazy learning along a continuous axis.
Theiranalytical characterization of the transition betweenlazy andrich
learning regimes in deep linear networks (driven by the relative scale
of initialization) offers a promising basis for predicting behavioural
patterns along this continuum, potentially yielding a more nuanced
accountof humanvariability in learning strategies beyond the bimodal
approach takenin the current study.

While we have argued that humans and ANNs face similar com-
putational trade-offs during continual learning, humans are likely to
deploy additional mechanisms to balance these challenges. In particu-
lar, the medial temporal lobe supports the rapid acquisition of new
tasks before integration into cortical knowledge systems over longer
timescales” 7, a process that our linear networks cannot replicate.
Biological systems may also mitigate interference through mechanisms
suchasreplay-based consolidation””*” and synaptic consolidation™ 7%,
both of which haveinspired continual learning approachesinartificial
learning systems®*%>7782,

While we explored ANN implementations of these mechanisms—
including replay, synaptic consolidation (via elastic weight consolida-
tion) and modular architectures—we found that none recapitulated
the behavioural profile of human splitters, which was most closely
matched by lazy networks with high-dimensional, task-specific repre-
sentations (Supplementary Section 6 and Supplementary Figs.17 and
18).1Itis possible that such mechanisms operate on timescales beyond
those captured by our task. Replay hasbeen shown to support ongoing
generalization®"®, with interesting implications for how knowledge
continues to be structured after learning. This parallels recent stud-
ies in rodents showing that generalization abilities can continue to

develop even after task performance has plateaued®. Synaptic con-
solidation mechanisms observed in biological systems™ " may also
require extended consolidation periodsto preventinterference. These
temporal considerations may help explain why participantsin the Near
conditionwhoavoidinterference (splitters) succeed through strategies
that come at the cost of transfer and generalization. Specifically, while
participants in the Far condition naturally separate task representa-
tions due to their dissimilarity, such separation may be more difficult
to establish in the Near condition, where the similarity of rules blurs
taskboundaries. The strategy observed insplitters may reflectaviable
solution for mitigating interference in settings where neither offline
consolidation over longer timescales nor straightforward inference of
task boundariesis available to learners.

In our study, neither humans nor ANNs were given explicit task
labels or cues about when the task changed. This design mimics more
naturalisticlearning environments, where task boundaries are inferred
from environmental structure rather than signalled externally®’. An
important future direction will be to characterize how and when rep-
resentational separation occurs for different levels and dimensions of
task similarity. One promising approach is to draw on meta-learning
methods thatinfer task boundaries fromshiftsin datastructure, suchas
Bayesian frameworks that jointly segment data and learn task models®®,

Humans are experts atidentifying boundariesin the world using
attributes that go beyond the notion of rule similarity we use here®*%,
For example, previous work has shown that the temporal proximity
oflearning episodesis critical for knowledge partitioning in humans,
such that events closer in time are more likely to be attributed to the
same source**?*?!, This general ability to partition knowledge over
time has been linked to various aspects of mental health, including
anxiety’> and symptoms in post-traumatic stress disorder®. Future
work could extend our understanding of these processes in mental
health conditions by considering how these behaviours might balance
transfer and interference in different environments. This perspective
highlights another component of the challenge: while forgetting
past knowledge will be maladaptive, there is of course the need for
flexibility in revising knowledge structures when the environment
has truly changed®.

Finally, over extended training or in settings involving many
tasks, humans appear capable of decomposing tasks into reusable
elements’*. Recent work by Driscoll et al.”® provides a potential com-
putational mechanism for this, showing that recurrent neural networks
trained on multiple tasks develop dynamic motifs—such as decision
boundaries or attractor states—that are reused across tasks. Extend-
ing our paradigm to longer sequences of tasks in humans could reveal
whether similar reusable structures emerge to support the decomposi-
tion oftasksinto shared and distinct components, facilitating transfer
withoutinterference.

In conclusion, our results support the theory that patterns of
transfer andinterference in humans and ANNs reflect acomputational
trade-off between sharing and separating representations during
learning. Across both systems, this balance depends on global trends
such as task similarity, as well as properties of the learner’s initial task
solution. Understanding these constraints may provide new avenues
for characterizingindividual differencesin continual learning and how
they relate to stable cognition.

Methods

Participants

Participants were recruited on Prolific.co (discovery study: N=202
recruited; N =151after exclusion; replication study: N = 215 recruited;
N =154 after exclusion). Prolific inclusion criteria included being
between 18 and 40 years old, being an English speaker, being located
in the US or the UK, having a minimal approval rate of 90% and hav-
ing a minimum of five previous submissions on Prolific. Among the
305 participants total remaining after exclusion, the mean age was
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31.37 years (s.d. 8.27) and 157 were female. After eligible participants
were recruited, we additionally excluded participants who reported
usingtools (for example, pen and paper) in the debrief, and participants
whose accuracy did not significantly exceed chance performance in
the final two blocks of learning task A. We preregistered our exclusion
criteria, our experimental design, and our main hypotheses about
transfer and interference. The discovery study was preregistered at
https://osf.io/ps4m9 (preregistered under ‘Experiment1’). Thereplica-
tionstudy was preregistered at https://osf.io/92dpm. Ethical approval
was obtained from the Oxford Central University Research Ethics
Committee (Ref:R50750/RE009). All participants gave informed con-
sent before the experiment. The experiment took on average 35 min
to complete, and participants were compensated £8 per hour with a
performance-dependent bonus of up to £3.

Task design

The task required participants to map unique stimuli (images of fic-
tional plants) to circular outputs (locations on a planet) intwo distinct
contexts: summer and winter. On each trial, participants adjusted a
dialtoindicate the correct position of each stimulusonacircle, always
indicating its summer location followed by its winter location (receiv-
ing feedback after each response). The experiment consisted of two
sequential tasks (task A and task B), each defined by a unique set of
six stimuli. Participants were not informed that a second task would
follow and received no explicit indication when the task changed (see
Supplementary Section1for task instructions). Within each task, there
was afixed relational rule that defined the angular offset between the
stimuli positions in summer and winter (rule Ain task A; rule B in task
B). The study was divided into three phases: training on task A (phase
1), training on task B (phase 2) and retesting of task A without feedback
for the winter season feature (phase 3).

Intotal, participants completed 300 trials equivalent to 25 blocks.
Eachtraining phase (phases1and 2) consisted of 120 trials (10 blocks)
where each block included a single presentation of each stimulus in
eachseason (6 stimuli x 2 seasons x 10 blocks). The retest phase (phase
3) consisted of 120 trials (10 blocks) of task A stimuli only (6 stimuli x 2
seasons x 10 blocks). While participants were always probed on the two
seasons of agiven stimulusin afixed order (summer then winter), the
order of presentation of the different stimuli was randomized within
ablock. During the retest phase, participants continued to receive
feedback for the summer season (always presented first) but not the
winter season.

Feedback was presented as a circle indicating the true stimulus
location, with Gaussian noise (s.d. 5°) added. Feedback circles were
colour-coded green when the response was sufficiently accurate to
gain points, and red otherwise. Points were allocated on the basis of
the response error (the angular distance between the participant’s
response and the correct location). Points were calculated as

points = Iog( 2).
error

Points were capped at a maximum of ten per trial and rounded
to the nearest integer (errors 230° earned no points). During training
(phases1and 2), the cumulative score was displayed at the top of the
screen. One of the six stimuliin task A was randomly selected as a test
stimulus. For the test stimulus, feedback on the winter location was
withheld for the entirety of the experiment, requiring participants
to infer the correct location using the task rule. After completing the
full study, participants were tested on their ability to report the onset
of each stimulus. Each stimulus was presented twice in arandomized
order, and participants were asked to indicate with a left/right button
press whether they had observed each stimulus for the first time near
the beginning of the study (corresponding to task A stimuli), or halfway
through the study (corresponding to task B stimuli).

Conditions
Participants were randomly assigned to one of three conditions,
defined by the similarity of the rules in tasks Aand B. In the Same con-
dition, therule remained identical across tasks. In the Near condition,
therule changed by 30° (clockwise or counterclockwise) between tasks.
Inthe Far condition, the rule changed by 180° between tasks.
Thetask Arule was selected randomly and uniformly for each par-
ticipant. Across both tasks, the angular distance between summer and
winter locations was constrained to be greater than30°. This restriction
placedthetask Aruleintheranges of 60-150°and 210-300°, and task
Brulesintheranges of30-120°and 240-330°. The summer locations
of stimuli within each task were randomized for each participant.
Regular spacing between stimuli was enforced by sampling six initial
positions at 60° intervals with added Gaussian noise (s.d. 15°), sepa-
rately for each task.

Behavioural analyses

We began by analysing participants’ accuracy. Response error is
defined as the absolute difference between a plant’s true location
and the participant’s response on any trial, in degrees. To compute
accuracy, we normalized response error using the maximum possible
error (180°):

error
accuracy =1- .

180°

An accuracy of 1therefore indicates a perfect response, while an
accuracy of O indicates the maximum possible error. Unless explicitly
stated otherwise, we analysed accuracy for the winter probe responses,
whichinvoke the task rule (because winter is afixed offset from summer
and is always preceded by summer).

For our main two hypotheses concerning transfer and inter-
ference (preregistered at https://osf.io/92dpm/), we report the
results separately for the discovery and replication samples (see
Supplementary Fig. 6 for dataplotted by sample). To measure transfer,
we calculated the change inaccuracy for winter response between the
final block of task A training (block 10) and the first block of task B train-
ing (block 11). Differencesin this variable across conditions (Same, Near
and Far) were evaluated using a one-way analysis of variance. Post-hoc
comparisons were conducted using one-sided ¢-tests to evaluate the
specific predictions that transfer would be lowest in the Far condition,
followed by the Near condition and the Same condition.

Interference was measured as the probability of using rule B dur-
ing retest of task A. We computed participants’ rule responses as the
offset between their winter season response and the feedback received
for the previous summer response. When this metric is computed
on the ground-truth winter location, this offset corresponds to the
task rule (distance between winter and summer) which is consist-
ent for all stimuli within a task. To quantify interference between the
different rules in the Near and Far conditions, we fit a mixture of two
von Mises distributions’® (that is, a circular analogue of the normal
distribution) to participants’ rule responses, using expectation maxi-
mization. We fit a model with predetermined means of rule A (6,)
and rule B (8;) for the two distributions, and two free parameters: a
mixing weight (i) that captures the relative contribution of 8, and 6;,
and a single concentration parameter across both distributions (x),
representing dispersion of the distributions around their respective
means. Model fitting was carried out in python using the SciPy pack-
age, with custom code adapted from https://framagit.org/fraschelle/
mixture-of-von-mises-distributions (ref. 97), based on the method
presented in ref. 38. Models were fit separately for each participant,
over arange of initial mand k, with the best-fitting model identified by
itsloglikelihood. Further detail about the the model fitting procedure
and model validation is included in Supplementary Section 4, and
participant-level model fits with posterior distributions overlaid on
responses are shown in Supplementary Figs. 10 and 11.
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We used a one-sided t-test to evaluate the hypothesis that the
contribution of rule B (i) will be greater in the Near condition than
the Far condition during retest of task A, reflecting greater interfer-
ence fromlearningtask B. Asreported in our preregistration, for our
interference analysis we excluded participants who failed to learn
rule B during task B. Our prediction rests on the assumption that
interference when retested on task A is a result of learning task B, so
if participants fail to learn task Bwe did not expect them to show this
interference effect at retest of A. We identified these participants by
fittingresponses during task B (precluding the first block of Bwhere
participants have not had the opportunity to learn) to two separate
models reflecting use of rule A and rule B (single von Mises distribu-
tions centred on 8, and 6, respectively). Participants who continued
touserule Aduring task Bwere excluded inthe interference analyses
(14%; n = 28 excluded out of 202 participants total in the Near and
Far groups).

Individual differences in Near condition

Participantsin the Near condition were categorized as either splitters
orlumpersbased on their susceptibility tointerference from task B dur-
ing the retest of task A. To quantify this, we fit participants’ responses
during retest to two separate von Mises distributions: one centred
on the task A rule (6,) and the other on the task B rule (6;). Because
the models were matched in complexity, the best-fitting model was
determined using the minimum negative log likelihood. Participants
who returned to using rule A during retest were classified as splitters,
while those who updated to using rule Bwere categorized as lumpers.
We continued to exclude those participants who had failed to update
toruleBatallduring task B (outlined in the previous section). After cat-
egorizing participants as splitters or lumpers, we compared anumber
of behavioural metrics between these two groups.

 Transfer. As previously defined, this is the cost of introducing
new task B stimuli. Specifically, this is the change in accuracy for
winter responses from the final exposure to task A stimuli to the
first exposure to task B stimuli.

» Generalization. Winter accuracy for the test stimulus, for
which participants never receive feedback. To infer the correct
response, participants had to generalize their knowledge of the
task rule to feedback received about the stimulus’ summer loca-
tion. Generalization accuracy is averaged over the second half of
task A only, to allow for rule learning.

« Summer accuracy. Average accuracy for summer responses in
task A. Unlike winter responses, which could be inferred via the
task rule, summer responses relied on participants’ memory of
the unique stimuli locations. See Supplementary Section 5 for
analyses showing that this splitter advantage for summer holds
in all three sections of the study (train A, train B, retest A).

 Stimulus onset accuracy. After completing the entire study,
participants were asked to report the temporal onset of each
stimulus—whether first encountered in the first half of the study
(task A) or the second half (task B). In other words, this is their
ability to distinguish unique stimuli on the basis of their tempo-
ral separation during the study.

We used two-sided t-tests to compare the performance of lumpers
and splitters for each metric. Inaddition, because stimulus onset recall
accuracy was clustered around the upper boundary, we performed a
robustness check by conducting a mixed-effects logistic regression.
The model predicted trial-wise binary accuracy during the debrief
categorization test fromgroup (lumper/splitter), witharandominter-
cept for participant.

Further analyses explored the nature of interference in both the
Near subgroups, and Far condition, focusing on the cognitive mecha-
nisms underlying errors made. In Supplementary Section 4.2, we pre-
sentamodel comparison designed to distinguish whether interference

is better captured by discrete rule swaps or by graded biases. In line
with our ANN-inspired predictions, we found that lumpers were best
fit by models consistent with graded updating (single distribution),
whereas errorsinthe far group exhibited evidence of swap-like errors
(Supplementary Fig.12). We extend this analysis for the lumper group,
by allowing the interference mean to vary freely. The results show
strong alignment between the fitted offset and the true rule Bdirection,
further supporting the interpretation that lumpers updated a single
internal distribution to reflect the new rule (Supplementary Section
4.3 and Supplementary Fig.13).

ANN training procedure

All networks were trained on participant-matched task schedules,
meaning each network was paired with a specific human participant
andreceived the exact same sequence of trials—including the precise
stimulus order and corresponding target outputs defined by that par-
ticipant’s task rules. Each experimental phase (train task A, train task
B andretest task A) consisted of single-batch updates for participant
training trials (120 trials per phase, that is, 10 repetitions of 6 unique
stimuli probed on each season sequentially). Because neural networks
require more training to reach stable performance, we trained each
network on its twinned participant schedule repeated 100 times per
task phase. New networks were initialized for each participant sched-
ule (n =305 networks total). Network weights were not reset between
experimental phases. Tomatch the learning opportunities available to
human participants, networks received gradient updates only during
trialsinwhich participants received feedback—that s, all trials except
the winter trials for the test stimulus in task A and the winter trials dur-
ing the retest phase of task A.

Neural network simulations were implemented and analysed
in Python using the Pytorch, Scikit-learn and Numpy packages. We
trained two-layer feed-forward linear networks, mapping discrete
one-hot encoded inputs to continuous output coordinates. Layer-
wise linear networks provide a tractable framework for analysing
internal representations and their role in transfer, generalization and
interference®”%'°°, While our mainresults are shownin this setting, we
replicatekey findings in ReLU networks (Supplementary Section2and
Supplementary Fig. 5) and consider extending to other architectures
animportantdirection for future work.

Inputs to the network were one-hot vectors to match the discrete
task stimuli, with six unique inputs per task. Outputs were represented
as Cartesian coordinates corresponding to the cosine and sine of the
angles for summer and winter, to account for circular wrapping. Thus,
the ANNs had 12 input units (representing the 6 stimuli per task) and
4 output units corresponding to cos(summer), sin(summer) and
cos(winter), sin(winter).Intheresults presented, networkshad ahidden
layer with 50 units, although findings were consistent across different
hiddenlayer sizes (Supplementary Fig. 4). Networks were trained using
online stochastic gradient descent (with learning rate = 0.01). The
model was trained using MSE loss between the true and predicted fea-
ture location (Cartesian coordinates) for the probed stimulus season:

L= % (i — sin(Bs,,-))2 + (0, - cos(Gs,,«))z] , o)

where 6, ;is the correct angle for stimulus sat the probed season i (winter
or summer), and X,;and y, ;are the outputs corresponding to the net-
work’s predicted Cartesian coordinates for stimulussinseasoni. In other
words, oneach trial, only the summer or winter output pair—depending
on which feature was probed—contributed to the loss. The unprobed
outputs were not penalized. This output structure avoids forcing the
network to resolve competing outputs in a shared space, allowing it
instead to learn consistent structure between the outputs. On trials
where human participants did not receive feedback (for example, winter
responses for the test stimulus or winter responses during retest), no
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gradient updates were performed. For interference patterns across a
continuum between Near and Far conditions, see Supplementary Fig. 3.

Analyses of ANN representations

Toinvestigate the task representations supporting transferin therich
ANNSs, we analysed activity at the hidden layer of the network using
PCA. First, we assessed the dimensionality of the representations in
the different networks. We took each network’s activity at the hidden
layer when exposed to allinputs, separately after training on task Aand
task B. We calculated the number of principal components required
to explain 99% of the activity variance in each case. This showed that
the number of components doubled after training on task Bin the Far
condition, but remained consistent in the Near and Same condition
(Fig. 2d).

To visualize these differences in geometry between conditions
(Fig.2f-h), we plotted the hidden representations of task inputsin the
two-dimensional subspace defined by the first two principal compo-
nents of activity. For illustrative purposes, we trained a network on a
randomly selected task A, and then trained it separately on the Same,
Near and Far rule version of task B. We then performed PCA (n=2
components) onthe network activity when exposed to allinputs (after
full training). Projecting all task inputs onto this two-dimensional
subspace revealed that, in the Same and Far conditions, the new task
Binputs were mapped onto the same subspace, but notin the Far condi-
tion. To characterize the representational geometry of the two tasks
inthe different conditions, we computed the principal angle between
task subspacesinall participant-matched networks. The principal angle
is a standard measure of the alignment between two subspaces, with
smaller anglesindicating greater overlap and larger anglesindicating
orthogonality*°~*2. To compute the principal angle between task sub-
spaces in each network, we extracted the hidden layer activations in
response to the set of task A stimuli, and the set of task B stimuli, after
training on task B. Using PCA, we identified the two-dimensional sub-
space for the sets of stimuli belonging to each task, represented by
their respective orthonormal bases V, and V5. To compute the principal
angles between these subspaces, we performed asingular value decom-
position on the inner product matrix:

ViVs = PAZPL.

Here, X isadiagonal matrix, with diagonal elements corresponding
tothe cosines of the principal angles between the two subspaces. The
first element of X corresponds to the largest singular value and is the
cosine of the first principal angle:

6, = arccos(X[L,1)).

We display the principal angles (8,) between the task Aand B sub-
spaces averaged across simulations in each conditionin Fig. 2i.

Richand lazy regimes in ANNs

We trained ANNs to converge on rich or lazy task solutions by manip-
ulating the scale of initial weights®* 74344101102 A[[ network weights
were initialized as random samples from Gaussian distributions with
amean of zero. Following previous work**, we define the rich regime
as networks initialized with small embedding weights (6 =107) and
in the lazy regime large embedding weights (o =2). We present addi-
tional information about the performance of networks initialized with
variances along this continuumin Supplementary Fig. 16. Because the
lazy-rich distinction controls the structure of representations at the
hiddenlayer (formed by the embedding weights), the readout weights
must remain flexible to enable learning**. During lazy learning, this is
what allows the network to extract rules from the high-dimensional
representations in the embedding space. We therefore initialized the
read-out weights with a fixed rich setting (0 =1073).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed, anonymized human dataand simulation data from this
study are available via GitHub at https://github.com/eleanorholton/
transfer-interference. There are norestrictions on data availability, and
all relevant files are provided in CSV format. No data with mandated
deposition are included in this study.

Code availability
The code used for data analysis and modelling in this study is available
viaGitHub at https://github.com/eleanorholton/transfer-interference.
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The research sample consisted of adult participants recruited via Prolific.co, an online platform frequently used for behavioural
research. Participants were recruited based on the following inclusion criteria: Aged between 18 and 40 years; Native English
speakers; Located in the US or the UK; Holding a minimum approval rate of 90% on Prolific; Having completed at least 5 previous
studies on Prolific. A total of 202 participants were recruited for the Discovery study (151 remaining after exclusion) and 215
participants were recruited for the Replication study (154 remaining after exclusion). Of the 305 participants total remaining after
exclusion, the mean age was 31.37 years (SD = 8.27) and 157 participants identified as female.

The sampling strategy was convenience sampling using Prolific.co, an online participant recruitment platform that provides a large
and diverse pool of participants. Sample size for the replication study was determined based on a power analysis of the original
dataset (discovery sample). The effect sizes detected in the original study suggested that a sample size of 50 participants per
condition (same, near, far) would be sufficient to detect the hypothesized effects at a power level of 80%. This sample size also
allows us to make direct comparisons with the original study to test the reproducibility of findings. No formal sample size calculation
was conducted for the previous study.

Data were collected using a custom-built online task coded in JavaScript, which was hosted on the lab server. Participants completed
the task remotely on their own computers via Prolific.co. The task involved a visual-motor response paradigm where participants
moved a dial to indicate their response on a circular display. The experimental setup was fully automated and participants completed
the task independently. The experiment was designed to ensure that participants could not receive any feedback or external
assistance beyond the visual feedback provided within the task. The researchers were not blind to the experimental conditions, but
this was not necessary as no researchers were present during data collection. The study hypotheses were pre-registered and
outlined in detail prior to data collection.

Study 1 (discovery sample) was conducted 8th-9th July 2024. Study 2 (replication sample) was conducted 21st October 2025.
Data exclusions were pre-registered and applied according to the following criteria:

Tool Use Exclusion: Participants who reported using external tools (e.g., pen and paper) to remember correct responses were
excluded.

Accuracy Criterion for Task A: Participants whose accuracy did not significantly exceed chance performance (defined as 90 degrees of
error) during the final two blocks of training on Task A were excluded.
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Interference Analysis Exclusion: For the interference analysis, participants who did not adequately learn Task B were excluded. This
was assessed by fitting responses during Task B to two von Mises distribution models representing the use of the two rules (A-rule
and B-rule). Participants were excluded if the A-rule provided a better fit to their Task B responses than the B-rule.

Incomplete Data: Participants with missing or incomplete data were excluded from the analyses.

These criteria were pre-registered. A total of 51 participants were excluded from the Discovery study (202 recruited, 151 remaining)
and 61 participants were excluded from the Replication study (215 recruited, 154 remaining).

Non-participation Participants who began the task could choose to return the study on Prolific.co before completion. Approximately 16% participants
returned their submission on Prolific during the study. The decision to return the study was made voluntarily by participants, and no
specific reasons for return were provided by Prolific. No participants who completed the task dropped out or declined participation
beyond these returns.

Randomization Participants were assigned to one of three experimental conditions (same rule, near rule, far rule) through a process involving three
separate recruitment batches on Prolific.co. Each condition was associated with a unique Prolific recruitment link that directed
participants to a specific version of the task differing only in the independent variable. The description of the task on the Prolific
interface was identical across conditions. Participants self-selected into one of the conditions by responding to the available
recruitment link. The recruitment process was run in parallel for all three conditions. Prolific’s recruitment interface ensured that
participants who participated in one version of the study were not eligible to participate in any of the other conditions.
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