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Abstract

In natural environments, most rewards follow a period of pursuit. This requires the
ability to plan over multiple steps, as well as the need for commitment to chosen
goals. This thesis examines these two components of goal-directed behaviour:
planning and commitment.

In the first half of the thesis, I investigate the psychological and neural mecha-
nisms supporting commitment to selected goals. This is addressed using a com-
bination of behavioural modelling, functional magnetic imaging (fMRI), and a
study with lesion patients. I propose that commitment is supported by attentional
mechanisms which prioritize completion of the chosen goal at the expense of better
alternatives. Among healthy people, differences in goal commitment and goal-
directed attention are predicted by sustained activity in the ventromedial prefrontal
cortex (vmPFC). Damage to the same neural region reduces commitment to goals,
which leads to a performance advantage in settings where people tend to over-
persist. Nevertheless, it is discussed how seemingly irrational levels of commitment
to goals will be beneficial in many environments.

In the latter half of the thesis, I turn to questions of how planning toward
goals is affected by medial prefrontal damage, in a population of lesion patients.
Two pre-existing paradigms in computational neuroscience are used to dissociate
how damage affects the different cognitive components contributing to planning.
I find that lesions to medial prefrontal areas impair planning in the more com-
plex setting (the ‘four-in-a-row’ task), but not in a simpler setting (the ‘two-step’
task). Further investigation of the underlying cognitive components suggests that
damage affects the capacity to select all the relevant information for planning in
complex environments.

This work was funded by a 4-year studentship from the Wellcome Trust.
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Long Abstract

Chapter 1 introduces conceptual questions motivating the thesis. Goal-directed
behaviour in psychology is classically associated with its flexibility in response
to environmental change. In contrast, goal-directed behaviour in disciplines like
philosophy and behavioural economics is associated with inflexibility in the face of
new information. Specifically, people often show over-commitment to chosen goals
when better alternatives emerge. To understand this tension, different mechanistic
accounts of goal commitment are explored, as well as reasons why goal perseveration
biases might be beneficial in ecological settings. It is proposed that setting a goal
changes how subsequent information is processed to prioritise goal-relevant material
at the cost of excluding good alternative options. An attentional account predicts
that over-persistence with a goal manifests more in reduced flexibility to pursue
alternative goals than continued pursuit of a failing goal.

Chapter 2 introduces neuroscientific background for the thesis, with a focus
on the role of ventromedial prefrontal cortex (vmPFC) in goal-driven behaviours
given its relevance for later chapters. Three possible contributions of vmPFC to
goal pursuit are discussed, including (i) supporting all value-guided choice, (ii) sup-
porting choice reliant on model-based inference, and (iii) supporting the selection
of relevant over irrelevant information in the light of the current goal or context.
Different types of scenarios are discussed where this capacity for context-dependent
information processing will be critical. I contrast the contributions of vmPFC in
maintaining selected goals to areas like dorsal anterior cingulate cortex (dACC),
which seem critical for longer-term choices to engage or disengage with goals.

Chapter 3 sets up a new cognitive paradigm for investigating incremental
pursuit of goals. The task involves sequential decisions between persisting with
a current goal, and abandoning in favour of alternative goals that could promise
greater long-term reward. The task design enables the quantification of different
forms of pressure on peoples’ tendency to persist, such as the rate of progress, or the
impact from alternative options at different points in pursuit. Attentional biases
are also investigated outside the decision context in an interleaved spatial working
memory task. People show over-commitment to current goals. Individuals with
stronger goal commitment showed higher goal-directed attention in the interleaved

vii



task between decisions. Increasing goal-directed attention is reflected in the deci-
sion process itself: while pursuing a goal, people lose their sensitivity to valuable
alternative goals, while remaining more sensitive to changes in the current goal.

Chapter 4 investigates neural areas supporting goal pursuit in healthy indi-
viduals using fMRI. A network of medial prefrontal regions centred on vmPFC
shows sustained goal-related activity between decisions. Individual differences in
behaviour (both goal-oriented attention and decisions to persist) are predicted by
baseline activity in vmPFC. These findings offer a potential neural mechanism
underlying goal commitment. Specifically, sustained representations of the current
goal in vmPFC bias attention and subsequent choices toward current goals. Value-
related activity at the time of decision is also modulated by goal pursuit. Mirroring
the behavioural finding that people lose sensitivity to alternative value as they near
the goal state, ventral striatum also loses sensitivity to the value of alternative goals
(but not the current goal) over the course of goal pursuit.

Chapter 5 directly builds on the previous chapter by asking whether vmPFC is
causally involved in commitment to an existing goal in the face of alternatives. The
same paradigm is tested in a population of individuals with brain lesions and age-
matched healthy controls. Individuals with damage to the same region of vmPFC
are less likely to persist with a chosen goal. Importantly, the relationship between
lower goal commitment and damage to this region of vmPFC is not explained
by higher stochasticity. These patients choose to abandon their current goal at
appropriate times, thereby performing better than patients with damage elsewhere
who tend to over-persist with goals.

Chapter 6 investigates a different element of goal pursuit, namely the ability to
plan over multiple steps. The cognitive components of planning are investigated in
a population of medial prefrontal lesion patients using two pre-existing paradigms:
the two-step task and four-in-a-row task. While the two-step task involves planning
over a small horizon of binary choices, the four-in-a-row task presents subjects with
a more naturalistic planning framework consisting of long sequences of choices in a
complex state space. Medial PFC damage selectively impaired performance in the
four-in-a-row paradigm. Using a computational model to investigate the contribu-
tion of different cognitive components of planning, mPFC patients were more likely
to overlook relevant information on any trial. This was contrasted with relatively
preserved capacity to simulate future states, or to recognise good heuristics for
choice. These findings are linked to a general theory of mPFC involvement in
selecting goal-relevant information and guiding goal-oriented attention.

Chapter 7 discusses further implications and questions arising from earlier
chapters. The relationships between goals, behavioural inflexibility, and state repre-
sentations are discussed. Different interpretations are explored for the contributions
of neural areas to computations supporting goal pursuit.
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1
Introduction to cognitive questions

Swerve me? The path to my fixed purpose is laid with iron rails, whereon
my soul is grooved to run. Over unsounded gorges, through the rifled
hearts of mountains, under torrents beds, unerringly I rush!

—Herman Melville, Moby-Dick

Captain Ahab’s ‘fixed purpose’ is his doomed pursuit of the great whale Moby Dick,

which, despite the desperate pleas of his crew, leads him to a watery ruination. As

our narrator Ishmael woefully observes, ‘There is no folly of the beasts of the earth

which is not infinitely outdone by the madness of men.’ But what exactly are these

inescapable grooves directing Ahab’s soul?

Humans have the extraordinary capacity to be captivated by almost any goal.

From the fictional Ahab’s fixation on catching Moby Dick, to the marathon runner’s

determination to finish through harrowing pain, there seem to be no constraints

on the goals that drive us (although there are many constraints on the goals we

achieve). I take goals to refer to prospective outcomes that individuals pursue inten-

tionally (Kruglanski 1996; De Martino and Cortese 2023). Loss of the motivation

to pursue goals, such as in clinical apathy, has devastating effects on quality of

life (Heron et al. 2019).
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1. Introduction to cognitive questions

This thesis is not concerned with the question of how we choose goals in the

first place. Rather, it concerns the cognitive and neural mechanisms which support

continued pursuit of goals over time. I will argue that the selection of a goal leads

to pervasive changes in processing: information relevant to the goal is prioritised

in attention over irrelevant information. I propose that over-commitment to a

chosen goal partly stems from this attentional shift whereby good alternative goals

are excluded from the set of options considered. Finally, I will argue that these

changes depend on sustained activity oriented towards the goal in a particular

brain area (ventromedial prefrontal cortex; vmPFC) – the background for which

I introduce in chapter 2.

In this chapter, I set up some of the cognitive questions motivating the thesis.

I start with a simple question – what makes pursuit of goals different from other

behaviour? I begin by contrasting traditional accounts of goal-directed behaviour

in behavioural psychology which emphasise flexibility, with those in philosophy, and

behavioural economics, which emphasise inflexibility. I go on to explore the reasons

why we show a certain form of inflexibility in goal pursuit - over-commitment

to goals. I then explore various ways in which this over-commitment could be

understood in current accounts of decision-making. Finally, I consider how goals

are re-evaluated when they fail.

1.1 The flexibility of goal-directed action

What makes pursuit of goals different from other behaviour? A good place to start

is by comparing intentional pursuit of goals to habitual reward-driven behaviour.

Rewards in psychology simply refer to positive outcomes, whether that be food,

or money, or particular internal states such as pleasure (Schultz et al. 1997). As

I absent-mindedly reach for another biscuit while writing this thesis, I perform

an action to attain a reward. However, it is not an action to reach a goal of

biscuit eating. In fact, I had set myself the opposite goal of biscuit avoiding ten

2



1. Introduction to cognitive questions

minutes earlier. What makes pursuit of goals distinct from this habitual behaviour

to attain rewards? One answer to this is flexibility.

Animals learn over time to perform actions for rewards, a process known as

operant conditioning. Thorndike’s ‘Law of Effect’ describes how this learning takes

place: actions or behaviours leading to rewarding outcomes are more likely to be

repeated, whereas actions leading to no reward or punishment are weakened over

time (Thorndike 1898). Crucially, learning action only through direct reinforce-

ment is highly inflexible. If the environment changes, or the outcomes are no

longer rewarding, an agent who only learns through reinforcement will need direct

experience to relearn actions.

Yet animals are capable of flexibly behaving in new ways to attain rewards.

Nothing demonstrates this better than the experiments of Edward Tolman (Tolman

and Honzik 1930; Tolman et al. 1946). In classic studies, rats were trained to find

food in a maze (Fig.1.1). After the animals learned to navigate the maze, the

original path to the food reward was blocked, while 18 new (unexperienced) paths

were presented – one of which pointed directly at the location which previously

held reward. Despite never having taken this route before, over a third of animals

immediately selected the path which led to the previous goal location (Tolman et al.

1946). In other words, they were able to flexibly adapt action beyond the scope of

direct experience in order to reach the goal. This is an example of flexibility arising

from the use of a ‘cognitive map’ – a mental model of the environment allowing

behaviour to be adjusted if elements in the environment change.

Tolman’s rats were able to re-plan to reach the same goal when the environment

changed. Another marker of goal-directed flexibility is the capacity to stop pursuing

goals if they are no longer valuable. In devaluation paradigms, subjects learn to

associate actions with rewarding outcomes, such as pressing a lever for food. After

learning, an outcome is then ‘devalued’, for example through satiation of the food

reward. The critical test is whether the subject will continue to perform the action

when its outcome becomes undesirable (Fig.1.2; Adams and Dickinson (1981)).

Animals only learning through direct reinforcement will persist with the action,

3



1. Introduction to cognitive questions

Figure 1.1: Tolman and cognitive maps. Reprinted from Tolman et al. (1946). (a)
Training maze. Rats learned to navigate the maze to reach a food box (marked by the
arrow). (b) Testing maze. After four days of training on the maze shown in (a), the
original pathway was blocked and the animals rats were offered 18 unexperienced paths.
One path directly pointed to the previous goal location. (c) 36 percent of rats were able
to select the path which most directly led to the former goal location of all the offered
pathways. This is taken as a classic demonstration of the concept of cognitive maps,
namely mental models of the environment which can be flexibly utilised in the service of
pursuing goals outside of direct experience.

requiring experience with the devalued outcome to re-learn the action is no longer

appropriate. On the other hand, goal-directed animals – sensitive to where they

are going – could ‘look-ahead’ at the outcome through a mental map, and know the

action is no longer worth performing (Balleine and Dickinson 1998; Balleine 2005;

Dickinson and Balleine 2002; Killcross and Coutureau 2003). This second kind of

animal resembles what later became called ‘model-based’ agents – agents who can

make predictions using an explicit model of the environment to select actions best

directed to reach desirable goals (Doya et al. 2002; Daw et al. 2005; although see

Akam et al. 2015; Russek et al. 2017; Deserno et al. 2015, for alternative accounts

of ‘model-based’ behaviour arising from forms of ‘model-free’ learning). This is

contrasted with the ‘model-free’ agents described earlier, who are limited by being

reactive to direct experience (Doya et al. 2002).

Notably, this goal-directed flexibility comes at a cost. After extensive training

in a particular task, animal behaviour transitions from being goal-directed (sen-

sitive to devaluation) to being habitual (insensitive to devaluation; see Fig.1.2c)
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1. Introduction to cognitive questions

(Dickinson 1985; Dickinson and Balleine 2002). One explanation for this is that

goal-directed behaviour is slow and costly, requiring animals to utilise model-

based prediction. If the environment stays stable for long enough, goal-directed

behaviour can revert to habit, which is efficient but inflexible (Keramati et al.

2011; Gershman et al. 2015).

So one answer to the question of how goal-directed behaviour can be identified

is through its flexibility. In contrast to habitual reinforced action, behaviour which

is in pursuit of a goal must be sensitive to the goal itself (is the goal still desirable?)

and the structure of the environment (how do I reach the goal?). I will come back

to ideas about model-based and model-free behaviour in chapter 2, but for now

let’s park this topic and turn to a completely different perspective on goals: one

which emphasises inflexibility.

1.2 The inflexibility of goal-directed action

So far, we have painted a picture of goal-directed behaviour as flexible: adaptable

to changes in the environment, as well as changes in the desirability of the out-

come itself. However, a contrasting perspective on the character of goal-directed

behaviour emerges from other disciplines.

A central concept in philosophy of mind is the notion of intentions: action-

guiding mental states which are created by decisions (Bratman 1987; Searle 1980).

Intentions have similarities to goals in the sense that they lead to intentional action

towards prospective outcomes. However they have two key features which contrast

to the goal-directed behaviour discussed earlier. First, intentions are “controlling”

in the sense that, similar to habit, they tend to guide behaviour automatically

unless interrupted (Bratman 1987). Second, intentions are “stable” in the sense

that, unless explicitly revised, they will persist over time. This stability can be

understood as a shift in the threshold for re-evaluation – a higher threshold of

contradictory evidence may be required to trigger re-evaluation of an intention

than the evidence required to form an intention in the first place.
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1. Introduction to cognitive questions

Figure 1.2: Measuring goal-directed behaviour in reinforcer devaluation paradigms.
Reprinted with permission from Gür et al. (2018). (a) In the training phase, animals
learn to associate an action (e.g. lever press) with a reward (e.g. food). (b) In the
devaluation phase, the reward is de-valued for example through satiation. (c) In the
test phase, the animal is presented with the previously reinforced action. Goal-directed
agents will no longer perform the action for the devalued outcome. Habitual agents will
continue to perform the action despite the outcome no longer being desirable.

The theory of intentions suggests that a psychological shift occurs after an

individual has chosen to pursue a goal, which reduces further deliberation and

flexibility. Previously, I contrasted goal-directed behaviour with habit (Balleine

and Dickinson 1998). Goal-directed action is flexible and sensitive to changes in the

environment; habit-based action is automatic and associated with over-persistence

in the face of change. However the philosophical account I just introduced seems to

propose that goal-directed behaviour can show these markers of habit – automatic

action and over-persistence in the face of change. Where does this idea that goal

pursuit reduces flexibility fit into the equation?

The rest of this chapter addresses this question in three parts. First, do people
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1. Introduction to cognitive questions

show this behaviour? If so, why would this behaviour emerge? And finally, how

could this psychological shift best be reflected in theories of decision-making?

1.3 Evidence for intentions

Do people show inflexibility when it comes to re-considering goals? Economists

define rationality in terms of making choices that maximise future expected re-

ward (Samuelson 1938; Von Neumann and Morgenstern 1944). A well-established

deviation from this in behavioural economics is the sunk cost fallacy: the ‘irrational

escalation in commitment’ following the selection of a particular goal (Arkes and

Blumer 1985; Staw 1976). This usually refers to the reluctance to abandon goals

after investing effort, time or money, in cases when it would be rational to do so.

Similarly observed phenomena emerge in many other disciplines. A closely related

idea in the field of aerospace is referred to as ‘plan continuation bias’, defined in a

NASA review as the ‘deep-rooted tendency of individuals to continue their original

plan of action even when changing circumstances require a new plan’ (Berman and

Dismukes 2006; Orasanu et al. 1998; Orasanu et al. 2001). It is also possible that

sunk cost biases emerge in other animals – escalations in commitment as a function

of investing time have been observed in rodents too (Sweis et al. 2018).

In the case of sunk cost biases, irrational levels of commitment are measured

after time or effort has already been invested in the goals. However more recent

studies have attempted to step away from sunk-cost scenarios by examining com-

mitment before any ‘investment’ in the goal has even been made. This is the idea

that the mere decision to pursue a goal spontaneously induces commitment toward

it (Cheng et al. 2023; Chu and Schulz 2022). Cheng and colleagues presented

subjects with the task of navigating an avatar towards one of two equidistant and

equally rewarding destinations on a grid (Fig.1.3). In some games, the location of

the participant’s avatar was disrupted to make the non-goal destination a closer

target. Participants tended to persist with the original goal despite the alternative
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1. Introduction to cognitive questions

Figure 1.3: Spontaneous commitment to goals. Reprinted with permission from Cheng
et al. (2023). (a) Participants navigated a grid world to reach one of two goals of
equivalent distance from their starting point and equal value. Actions could be randomly
disrupted to move the avatar to a nearby location on any trial. However, on critical
test trials, the disruption changed the location of the avatar to favour the alternative
destination. Specifically, on certain trials when participants revealed their intended goal
(i.e. moved toward destination A), the location of their avatar was perturbed to be closer
to the alternative goal. (b) People showed substantial over-commitment to their original
goal in the cases of deliberate disruption shown in (a), despite the fact that a rational
agent (modeled using a markov decision process) would always switch goals in light of
their new location.

goal being the closer and thus more rational choice, and despite having made no

progress towards the intended goal.

In another study, participants chose between two goals they would later have

to pursue (Chu and Schulz 2022). In one condition, the goals were presented

alongside their costs, while in the other condition the costs were only revealed

after choosing the goal. For adults and children, making an initial choice led to

irrational levels of persistence with the same goal after the costs were revealed,

despite the fact there was no penalization for changing one’s mind. In these

examples, selection of a goal biases subsequent choices towards persisting with

the goal even when no time or effort has yet been invested. In other words, goals

spontaneously induce commitment.
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1. Introduction to cognitive questions

1.3.1 Goal selection and goal pursuit

Between weighing up options, and selecting a goal, what exactly has changed? In

the field of social psychology, there has long been interest in the idea of discrete

decision-making phases corresponding to (i) evaluation of possible goals, followed

by (ii) pursuit of the chosen goal (Klinger 1975; Heckhausen and Gollwitzer 1987;

Achtziger and Gollwitzer 2008). In this framework, an initial phase of goal selection

might consist of careful evaluation of alternatives in the rational style proposed

by economists. However, once a goal is selected, the theory predicts that pro-

cessing resources are allocated towards implementing the chosen goal rather than

deliberating further. This idea has been developed more recently into a theory of

goal-driven cognition in neuroscience (O’Reilly et al. 2014; OReilly 2020). Before

delving into possible mechanisms, it is worth taking a moment to consider why

commitment might be beneficial.

1.4 Benefits of goal commitment

Why would goal commitment help? There is a long tradition of understanding irra-

tional economic biases in the context of adaptive pressures (Simon 1955; Sims 2003).

There are roughly two ways of approaching this (Gigerenzer and Gaissmaier 2011).

One approach focusses on the role that evolution – the joint constraints of our

cognitive abilities and ecological environments – has played in shaping hardwired

heuristics and biases (Simon 1957; Gigerenzer and Gaissmaier 2011; Giguère and

Love 2013). As Herbert Simon described, “human rational behaviour is shaped by a

scissors whose blades are the structure of task environments and the computational

capabilities of the actor”. This approach, first coined ‘bounded rationality’, presents

these biases as built-in mechanisms of computation honed by evolution.

A subtly different approach considers the use of heuristics itself as a meta-

decision, rather than an inflexible product of evolution (Thorngate 1980; Gershman

et al. 2015; Shah and Oppenheimer 2008; Payne et al. 1993; Lee and Daunizeau

2021). Considering that deliberation is computationally expensive, whether and
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how to embark on the process poses a problem at the meta level. The choice of

a heuristic strategy in these cases may reflect sensitivity to the trade-offs: lower

accuracy but savings on effort. In support of this, various psychological paradigms

have found that peoples’ choice of ‘simpler’ heuristics take into account factors

affecting the cost/benefit trade-off of the deliberation such as time pressure (Kera-

mati et al. 2016), or the extent to which further deliberation could actually improve

their decision (Russek et al. 2022; Callaway et al. 2022).

As Gigerenzer points out, the ‘accuracy-effort’ trade-off is not always an ap-

propriate description because using heuristics does not always entail sacrifices in

accuracy (Gigerenzer and Todd 1999; Gigerenzer and Gaissmaier 2011). A critical

idea here is that simple heuristics often out-perform computationally expensive

models in complex environments (for example, Czerlinski et al. 1999; Einhorn

and Hogarth 1975). This is particularly so in environments with high levels of

uncertainty or when relevant information in unknown (Gigerenzer and Gaissmaier

2011). This idea of ‘less-is-more’ in computation brings the debate full circle back

to bounded rationality – sometimes simpler heuristics give rise to better results

in the complex environments we evolved in (Beer 1995; Gigerenzer and Todd

1999; Brooks 1991).

With these approaches in mind, I briefly touch on some considerations for biases

towards goal commitment in this context.

1.4.1 Resource rational explanations

From both the bounded rationality perspective (hardwired biases), and the accuracy-

effort trade-off perspective, there are reasons why commitment biases could result

from effective use of limited resources (Gershman et al. 2015). In real world

environments, there is no limit to the number of alternative goals available for

deliberation (Kearns et al. 2002). Given the computational costs associated with

deliberation – particularly requiring planning across time – using resources to

pursue a selected goal may be adaptive even if good alternative options are sac-

rificed. It is unclear if commitment biases themselves reflect a meta-decision to
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trade off accuracy and effort (although for evidence in a similar setting see Lee

and Daunizeau (2021)). If commitment biases reflected a meta-decision, we might

expect to observe lower biases when there is more time for deliberation, or when

goal implementation is inexpensive.

1.4.2 Structuring behaviour under uncertainty

Even without limits on cognitive capacity, intentions in philosophy have been

argued to play a necessary role in structuring behaviour (Bratman 1987). In the

parable of Buridan’s Ass, a donkey placed between two equally valuable bales of hay

perishes out of indecision. A related phenomenon plagues the lives of many PhD

students, who over the course of their PhD discover successively better project

ideas only to find at the end of their program that not one project is complete.

In this example, rather than oscillate between two options of equal value, the

individual shifts successively to new options of higher value, never completing

a goal as a result. In noisy and uncertain environments, we can see how this

problem will be exacerbated: agents may switch constantly on the basis of noisy

estimates which fail to reflect accurate evaluations. How could goals help in these

cases? The stability of goal commitment could bring stability of behaviour in

worlds where future options are uncertain and evidence is noisy. This may be a

case of the ‘less-is-more’ genre of heuristic – where using a simple rule of thumb

favouring goal persistence outperforms more complex computations in ambiguous

and uncertain ecological settings.

1.4.3 Self-control and resisting temptation

A different angle of philosophical interest in intentions originates from the question

of how we exert self-control, specifically in terms of resisting temptation (Bratman

2014; Zelazo et al. 2023). In classic philosophical accounts, self-control involves

actively exerting effort to avoid temptation. However, an alternative view is that

it involves a capacity to prevent redeliberation in tempting scenarios, by setting

intentions. To illustrate this, image you are trying to avoid the temptation of going
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on social media before bed. One picture of self-control involves heroically abstaining

from picking up the phone as it lies enticingly on the bedside table. Another picture

involves using pre-emptive action to remove it from the set of options, for example

by leaving the phone downstairs. Intentions can be considered the psychological

version of the second solution: form the intention to read a book instead and the

phone is removed from your set of options.

1.5 Mechanisms of goal commitment

So far, I have discussed some empirical work suggesting goal selection induces

commitment, and proposed some reasons for why mechanisms of commitment could

be helpful. But what psychological mechanisms could realistically support this post-

decision shift, while also being favourable from an ecological perspective? Various

changes in computation could give rise to a behavioural bias to persist with a goal.

Perhaps after a selecting a goal, decisions continue to proceed in the same

way, but the goal option is simply more likely to be preferred. This might man-

ifest in an additive bias on options associated with the current goal compared

to any alternatives.

Alternatively, perhaps there is a radical change after selecting a goal where

decision-making systems are allocated to implementing the goal. This could mani-

fest as a total re-framing of value to express the usefulness of options with respect

to achieving the selected goal. In this case, commitment biases would emerge

simply because decision systems are dedicated to achieving the goal, but not re-

evaluating the goal itself.

Finally, perhaps the set of options being evaluated changes after goal selection.

Individuals might continue to evaluate the chosen goal, but filter information which

is irrelevant for goal pursuit. If this were the case, we might expect to see continued

sensitivity to the worth of the chosen goal, but reduced sensitivity to alternative

options. In the next section I delve into how these three hypotheses manifest in
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existing frameworks in the literature, and argue that this third option has the

most potential as a realistic psychological mechanism.

1.5.1 Choice-induced preference change

The first possibility is that goal commitment stems from a post-choice change

in preference: simply selecting an option increases the preference for it. In the

past, various studies have suggested that the value associated with individual items

increases after being chosen (Brehm 1956; Ariely and Norton 2008; Sharot et al.

2009; Sharot et al. 2010). It has been argued that monkeys show this bias too

(Egan et al. 2007; although see Chen 2008; Chen and Risen 2009). Classically, the

bias was explained in terms of cognitive dissonance (Festinger 1957): having made

a choice, agents are motivated to reduce the ‘dissonance’ associated with the regret

of failing to choose the alternative option (although see Lee and Daunizeau 2020,

for an alternative explanation of the bias). However, importantly in the case of goal

pursuit, a preference for always choosing the same option which extends beyond the

boundaries of a goal could not explain goal commitment – once a goal is completed,

continuing to over-value previously selected options could hinder pursuit of future

goals. More importantly, simply increasing the preference for a current goal does

not help with questions of resource allocation. If all possible options continue to

be evaluated at every step, fewer resources are available for implementing a goal.

1.5.2 Goal-centric accounts

A more radical proposal comes from recent ‘goal-driven cognition’ theories that

situate goals as the driving force in decision-making (Ringstrom 2022; Amir et al.

2024; De Martino and Cortese 2023; Molinaro and Collins 2023; Juechems and

Summerfield 2019). In the computational setting of reinforcement learning (RL),

agents try to maximise an abstract reward signal, where the concept of reward is

kept explicitly vague. Goal-centric accounts propose that the concept of ‘reward’

itself should be quantified in terms of how much closer options bring us to particular

goals or set-points. This could include homeostatic goals, such as avoiding hunger
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or thirst (Keramati and Gutkin 2014; Juechems and Summerfield 2019), as well as

more abstract goals such as fulfilling an intention (Amir et al. 2024). This theory

predicts that setting a goal fundamentally changes the meaning of subsequent

value: options are valuable insofar as they help to achieve the goal. A similar idea

has motivated computational accounts of goal-conditioned reinforcement learning

(Kaelbling 1993; Eysenbach et al. 2022; Liu et al. 2022; Plappert et al. 2018).

Some authors have focussed on developing RL algorithms that determine their

own reward signal based on setting goals (rather than maximising rewards emitted

by the environment) which could mimic more naturalistic accounts of motivation

in complex environments (Ringstrom 2022). A full review of this computational

approach is beyond the scope of this thesis. However, this more radical interpre-

tation of ‘goal selection’ could also lead to commitment biases: once a goal is set,

the goal itself may be the driver of subsequent reward.

1.5.3 Change in state representation

The previous section introduced the idea that goal selection could fundamentally

change what value is to agents. At its most extreme, value is identified with

progress towards the selected goal. However, if all reward signals are now in

the service of the goal, how do we escape bad goals? The notion that goals are

never re-evaluated once selected is neither practically nor observationally true. A

realistic framework for understanding biological agents should be able to deliver

prioritization of goal pursuit while retaining the necessary degree of flexibility.

The final account I consider proposes that goal selection involves a change in the

information represented. In particular, dimensions of the environment that are

relevant for achieving the current goal are selected over irrelevant dimensions.

One way of understanding this is through the concept of ‘state representation’

in the field of reinforcement learning (Wilson et al. 2014). The notion of a state

describes the collection of information relevant for an agent to make a decision

to maximise reward (see Fig.1.4) (Sutton and Barto 1998). A key challenge for

both biological and artificial learning systems is to isolate the elements of complex
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environments which are predictive of reward in the current task, and which should

therefore be included when representing the current state (Wilson and Niv 2011;

Bengio et al. 2014).

How do biological agents select the relevant state information? Mechanisms

of selective attention allow animals to filter irrelevant sensory input to enhance

relevant information (Treisman 1969; Duncan 1984). Attention can be captured

both by salient stimuli in the environment or deployed ‘top-down’ toward current

goals (Corbetta and Shulman 2002). Within the learning literature, selective atten-

tion has been proposed as a critical means of reducing high dimensional input, by

isolating the subset of dimensions important for value (‘state representation’), while

compressing irrelevant dimensions (Mackintosh 1975; Jones and Canas 2010; Leong

et al. 2017). At the centre of this insight is the conceptualization of visuospatial

attention as feature weights associated with the allocation of processing resources

(Desimone and Duncan 1995). This insight has also been used in models of category

learning, where category-irrelevant features are ‘compressed’ (ignored in attention)

to prevent disruption from irrelevant information which could interfere with the

correct answer (Love et al. 2004).

Could commitment biases emerge from changes in how information is repre-

sented – specifically, selecting information relevant for the current goal at the

expense of alternative goals? This theory makes specific predictions about the char-

acter of commitment biases: namely there will be greater flexibility if the current

goal changes (because goal-relevant information will continue to be represented),

but attenuated flexibility in response to goal-irrelevant information (for example,

information about good alternative options which is filtered out). There is at least

one study in the literature that supports this prediction. As described earlier,

individuals show strong goal perseveration when encountering high costs for the

current goal relative to other options, after selecting a goal (Chu and Schulz 2022).

In this case, the offer of a less effortful alternative did not weaken commitment to

the initial goal. However, when the goal itself was devalued (i.e. the outcome of the

chosen goal was deemed no longer valuable), participants did not persevere with
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the goal. While there are various explanations for the effect, the result is consistent

with the idea that decisions to abandon a goal may be more flexible in the face of

devaluation of the current course of action than offers of better alternatives.

This mechanism of commitment has a few advantages over both previous ac-

counts. First, it fits with a ‘resource rational’ perspective in the sense that by

selectively processing goal-relevant information, resources are primarily allocated

to goal pursuit. Second, it enables flexibility in two ways. Selective attention can

be graded, such that remarkably salient or valuable alternative options might still

capture attention (Lavie 2005). Moreover, continuous evaluation of the goal itself

could be possible, even if alternative goals are not being evaluated. In the final

section, I discuss how concepts from foraging paradigms could help explain how

higher level monitoring of the goal might be performed alongside goal pursuit.

Incorporating attention into models of decision-making has proven powerful in

helping to predict observed decision biases elsewhere (Gluth et al. 2020a; Talluri

et al. 2018; Hunt et al. 2018). Within the drift diffusion framework of models,

decisions are the result of accumulating evidence over time until a predetermined

threshold for evidence is met, and a decision is made (Shadlen and Shohamy 2016).

The biasing impact of selective attention can be captured as a higher drift rate

(faster evidence accumulation) on options currently attended, increasing choices

for these options (Krajbich et al. 2010; Krajbich 2019). An example in a similar

setting comes from two studies looking at the confirmation bias – reluctance to

revise a previous judgement. Both in monkeys and humans, the bias is linked

to greater attentional allocation toward belief confirmatory evidence (Hunt et al.

2018; Talluri et al. 2018).

1.5.4 Summary of goal commitment

In the previous sections, I discussed three different ways in which goal commitment

could be incorporated into our understanding of how decisions are made. First, goal

commitment could arise from a simple bias towards preferring options associated

with the current goal. By itself, this account does not speak to considerations

16



1. Introduction to cognitive questions

Figure 1.4: Task-state representations. Reprinted with permission from Niv (2019).
(a) Given the goal of crossing a busy New York road, what information should an
agent include in a representation of the task? (b) An illustration of an appropriate
state represention which includes all the necessary information to cross the road, from a
reinforcement learning perspective. This includes information about the set of relevant
states, transitions between states, available actions, and rewards and punishments
associated with each state.

of how commitment could help allocate resources towards goal pursuit. Second,

goal commitment could reflect a total overhaul of how we understand reward-

driven cognition, such that future rewards are defined in terms of how much closer

they bring an agent towards a goal. The problem with this account is that it

fails to provide an adequate explanation for how agents could escape bad goals.

Third, I considered goal commitment arising from shifts in selective attention,

where goal-relevant information is selectively processed at the cost of goal-irrelevant

information. In the final two sections, I explore how this third account could merge

with considerations about goal pursuit in real-world environments.

1.6 Goals in natural environments

At the beginning of this chapter, I introduced the idea that goal-directed behaviour

partly rests on the capacity to flexibly plan toward goals. This was discussed with

the example of Tolman’s rats, who were able to run straight to the goal location

without ever previously taking that route. In this section, I want to consider how

the ability to use a cognitive model for this kind of goal-directed behaviour will

interact with the ability to select relevant information.

In computational terms, using a model of the world to guide action involves

the agent simulating possible futures. In psychology and computer science, this

17



1. Introduction to cognitive questions

process of imagining future trajectories has been characterised as a decision tree,

where each decision is a branching point leading to alternative futures (Newell et al.

1959; Huys et al. 2012). Within this space, the ‘depth’ of the tree corresponds to

how far in the future planning extends.

In the real world, the depth of a decision tree is enormous – the number of possi-

ble actions we could take at any branch leads to exponential growth of options, and

makes full simulation intractable. In order to effectively plan in spaces this large,

both people and algorithms must rely on forms of heuristics (Pearl 1988; Sutton and

Barto 1998; Koller and Friedman 2009; Russell and Norvig 2016; Gershman et al.

2015). These heuristics include guidelines for selecting which branches to explore

(Pearl 1988; Dechter and Pearl 1985; Huys et al. 2012), as well as simplifying

the value representations at each node (Sutton and Barto 1998; van Opheusden

et al. 2023). An example of the first is a class of search algorithms known as

‘best-first search’, which guides exploration of the decision-tree by exploring the

most promising nodes first (Dechter and Pearl 1985). Another example comes

from empirical studies showing that people stop exploring particular branches after

encountering losses, a phenomenon known as ‘pruning’ (Huys et al. 2012).

It is clear how in these complex environments, being able to select relevant

dimensions and filter out irrelevant information will be even more critical for goal

pursuit. From this perspective, the very same mechanisms which give rise to

goal commitment biases might play a critical role in enabling planning in complex

environments – specifically, by selecting appropriate dimensions and compressing

irrelevant information. In the final chapter of this thesis, I will return to questions

of how mechanisms of selection could interact with goal-directed planning in more

complex environments.

1.7 Escaping goals

Attending to only goal relevant information means that alternative options are more

likely to be missed. So the question arises: when we don’t know what alternatives
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we are missing, how do we know whether to be happy with the current goal? In

this final section, I consider how studies of natural decisions in foraging paradigms

can help provide an answer to this.

In ‘foraging’ approaches, decision-making is investigated in settings that mimic

ecological choice problems (Stephens and Krebs 1986). One of the important ideas

that has emerged from the foraging literature is that the majority of decisions

made in natural environments are not between multiple options at once, but about

evaluating options in isolation (Cisek 2012; Kolling et al. 2012; Hayden and Moreno-

Bote 2018; Hayden 2018). In classic economic choice paradigms, options are often

presented as binary choices between two goods. In contrast, reward opportunities

in natural environments tend to be encountered one at a time, in sequence as the

animal moves through the world. Often these cases involve much more explicit

ignorance about alternative options than the situations where alternatives are

merely not attended to. This includes the type of decisions made by ‘foragers’

about whether to stay in a current patch or search for better alternatives as well

the type of decisions made by ‘predators’ to pursue a particular prey or wait for

better opportunities to come along. At the heart of it, both these ‘stay/switch’

and ‘accept/reject’ decisions are choices concerning whether to continue with the

current default or initiate a change (Hayden 2018; Kolling and O’Reilly 2018).

At its limit case, the value of alternatives are completely unknown, and the

decision must be performed by comparing the current value of the patch with

some long-run estimate of average experience (Stephens and Krebs 1986). An

example of this in the case of ‘patch-leaving’ decisions is the marginal value theorem

(MVT). Decisions about patch-leaving concern what point to leave a depleting

resource (such as a patch of food) and move on to another (see Fig.1.5). MVT

predicts that animals should switch to a different patch as soon as the rewards in

the current patch dip below the average reward rate across patches (taking into

account the costs of traveling) (Charnov 1976). Indeed there is good evidence that

animals perform this type of ecological decision near optimally (Wajnberg et al.

2006; Blanchard and Hayden 2015).
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Recently, it has been proposed that even when multiple options are presented

simultaneously, the brain evaluates them sequentially in the style of foraging choices

(Hayden 2018; Hunt et al. 2018; Hunt 2021; Hayden 2018). This has been linked to

the way in which primates forage through visual attention (Hunt 2021): anthropoid

primates tend to fixate sequentially on options in the environment, selecting or

rejecting possible courses of action (Coe 1984).

How is this relevant for theories of goal commitment? The foraging framework

predicts that specialised neural structures have evolved to support decisions to

disengage from a default option. In the context of goal pursuit, this could help

explain how the brain performs continuous evaluation of the goal itself, regardless

of whether there is input about the value of alternative options. This gives us a

mechanism by which agents can escape from bad goals, while still preferentially

committing resources to the current goal.

1.8 Summary and Research Questions

In this chapter, I began by asking what makes goal-directed behaviour special

from any actions to attain reward. One answer to this was ‘flexibility’, in the

sense that goal-directed action (as opposed to habit) is sensitive to changes in the

environment and the desirability of the goal. In contrast, there are features of

goal-directed behaviour which are ‘inflexible’ – namely that people systematically

over-persist with goals in the face of better options.

One possible explanation for this over-persistence is that goal pursuit constrains

processing to information relevant for the current goal. From this perspective,

I discussed how the same mechanisms underpinning goal commitment might be

particularly important for planning goals in complex environments with large state

spaces. Finally, I considered how valuation of the current goal could be carried out,

even without information about alternative goals (such as in foraging paradigms).

These thoughts lead us to the following research questions, which motivate the

main chapters of this thesis:
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Figure 1.5: Patch-leaving tasks. a(left) is reprinted with permission from Mobbs et al.
(2018). (a) In patch-leaving tasks, subjects make decisions about whether to continue
exploiting rewards in the current environment (e.g. picking apples), or move to alternative
patches. Since resources deplete over time, the decision concerns the question of when to
abandon the current patch at the cost of having to travel to a new patch. (b) Often in
patch-leaving paradigms, alternatives options are not explicitly presented, but decisions
to switch patches must be based on other factors like long-run average reward rate.
As described in the main text, the marginal value theorem provides a computational
framework for how to make optimal abandonment choices despite the lack of explicit
knowledge about alternatives.

1. How does goal commitment relate to changes in information processing such

as in attention? (chapter 3)

2. Are commitment biases more flexible in the face of information about the

current goal compared to information about alternative goals? (chapter 3)

3. What neural mechanisms support commitment to a goal, and disengagement

from goals which are no longer worthwhile? (chapters 4-5)

4. What is the relationship between attention and planning towards goals in

complex environments? (chapter 6)
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Exploring decision-making through the lens of goals will be key to understanding

how seemingly irrational behavioural biases arise in the context of ecological be-

haviour. In the next chapter, I return to some of the neuroscience background

that will be needed to investigate these ideas.
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In this thesis I include a number of lesion studies focussing on ventral areas of

the medial prefrontal cortex (vmPFC; see Fig.2.1). Our focus on this region arose

from the results of the first fMRI experiment, in chapter 4. As background for

the upcoming studies on these lesion patients, here I pose the question of what role

this region might be playing in supporting goal-directed behaviour, with reference

to some of the ideas developed in the previous chapter.

Lesions to prefrontal cortex have life-altering effects for patients, often leading

to devastating consequences for employment, relationships and general lifestyle

(Harlow 1868; Schneider and Koenigs 2017). Despite this, pin-pointing the pre-

cise cognitive deficits causing these real-world problems has proved an arduous

research task (Eslinger and Damasio 1985; Shallice and Burgess 1991; Harlow

1868; Burgess et al. 2000; Tranel et al. 2007). For many years, researchers were

limited by the paradoxical finding that catastrophic impairments in navigating the

real world often contrasted with perfect performance on classic neuropsychological

tests (Burgess et al. 2000).

Some of the earliest observations about the effects of prefrontal cortex damage

concerned difficulties with goal-driven behaviour in the real world. In 1868, John
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Harlow wrote of Phineas Gage, the first documented patient with prefrontal dam-

age, “he is fitful. . . devising many plans of future operations. . . which are no sooner

arranged than they are abandoned.” Similarly, an early example of a cognitive

test where prefrontal lesion patients did show impairments is the Multiple Errands

Task (Shallice and Burgess 1991; Tranel et al. 2007). This task involves planning

and carrying out a series of naturalistic tasks (e.g. completing a shopping list)

while abiding by various rules. Damage to vmPFC leads to difficulties structuring

behaviour across the various tasks (Tranel et al. 2007).

What could vmPFC be doing to support goal-driven behaviour? This chapter is

structured by three possible answers to this question. First, vmPFC damage could

be disrupting all value-guided decision. Second, perhaps vmPFC is particularly

necessary for constructing value when these decisions require the use of inferred

knowledge (or a ‘map’) about the relationship between events. Third, perhaps

vmPFC is critical when value is context-dependent - supporting the selection and

representation of goal-relevant over goal-irrelevant variables to guide choice. The

second answer can be considered the contribution of ‘using a map’ while the third

answer can be considered the contribution of ‘selecting the appropriate map’.

Before addressing these three elements, I briefly introduce the anatomy of

vmPFC. In the context of thinking about vmPFC’s role in goal-directed behaviour,

I make comparisons with various other regions in this chapter, especially hip-

pocampus. I also end with some thoughts about the role of dACC in supporting

disengagement and selection of goals, on longer time scales.

2.1 Anatomy of vmPFC

The vmPFC is not a region with clearly defined anatomical borders, but includes

a set of regions in the lower orbital and medial prefrontal cortex, with connections

to sensory and limbic areas (Mackey and Petrides 2014; Ongür et al. 2003; Ongür

and Price 2000; Wise 2008; Carmichael and Price 1995a; Carmichael and Price

1995b). The broader region can include parts of Brodmann areas 14, 11m, 10m
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Figure 2.1: Anatomy of medial PFC. (a) Areas of medial prefrontal cortex in
humans. Reprinted with permission from Klein-Flügge et al. (2022). The authors suggest
anterior medial prefrontal cortex (amFC) shows greater activity during tasks investigating
relational knowledge, while more ventral areas (vmPFC/mOFC) are implicated in value-
guided choice. However the authors note that across many fMRI studies of decision
making, activity is found in both locations or at the border (Bartra et al. 2013). (b)
Lower PFC areas, reprinted with permission from Yu et al. (2020). Damage to frontal
pole is often observed in patients with vmPFC damage. Note that based on connectivity,
lateral areas belong to a different network (Carmichael and Price 1996), and have been
linked to diverging functional impairments, for example the ability to attribute reward
to its cause (credit assignment); see Noonan et al. (2010); Walton et al. (2011); Noonan
et al. (2012); Noonan et al. (2017); Rudebeck et al. (2017).

(medial frontal pole), sometimes also including regions in 25, 32p (Fig.2.1). Spatial

precision becomes a substantial challenge in studies of human lesion damage. Some

studies refer to the total area including vmPFC and medial OFC as ‘ventromedial

frontal lobes’ (VMF) (Yu et al. 2020; Camille et al. 2011)).

Within this large region, there are various proposals for functionally specialised

subregions, some of which are discussed in this chapter (see also legend for Fig.2.1).

However, given that our understanding of the anatomical divisions are still evolving

(Glasser et al. 2016), and that lesion data has significant spatial limitations (Yu

et al. 2020), I will avoid making claims resting on precise anatomical specificity

within the ventral medial frontal lobes.
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2.2 Value-guided decisions

What could be affecting goal-directed behaviour in patients with damage to vmPFC?

One answer to this is that vmPFC patients find it generally difficult to make

decisions guided by value. In the context of economic choice, the term value refers

to the worth of options, as revealed by people’s preferences (Jevons 1866; Samuelson

1938). It is well established that vmPFC lesion damage results in people showing

less consistent preferences (Fellows and Farah 2007).

There is a long literature implicating the vmPFC in subjective value generally

(Bartra et al. 2013; Klein-Flügge et al. 2019). Activity in vmPFC varies with value

across different categories of reward (Bartra et al. 2013; Levy and Glimcher 2011;

Chib et al. 2009; Lopez-Persem et al. 2020), and also incorporates the uncertainty

of options in the way that economic expected utility signals should (De Martino

et al. 2013). Even when items are presented on their own outside of choice

scenarios, vmPFC activity varies with their value (Lebreton et al. 2009). Since these

correlations are not limited to any single domain of reward (e.g. ‘food’ or ‘aesthetic

beauty’) the theory was developed that vmPFC transforms value into a ‘common

currency’ to guide a unitary behavioural output in the face of multifarious reward

currencies (Levy and Glimcher 2012). Moreover, activity correlates specifically

with subjective value – the preferences specific to the individual (Bartra et al.

2013; Lopez-Persem et al. 2020).

There has been great interest in understanding how neural activity in vmPFC

could support the process of option selection. Comparison between binary op-

tions can be captured by models of mutual inhibition (Wang 2002; Hunt et al.

2021). Separate populations of neurons representing each option compete for

choice. Recurrent excitation within populations and inhibition between populations

produce dynamics which amplify the difference between the options (Strait et al.

2014). These dynamics can explain the trade-mark post-decision signal observed

in fMRI studies of vmPFC, where activity often reflects the overall value difference
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between chosen and unchosen options (Boorman et al. 2013; Hunt et al. 2012;

Hare et al. 2011).

However, if there is one conclusion to be drawn from previous decades of decision

neuroscience, it is that no single brain area is uniquely responsible for all forms

of decision (Rushworth et al. 2012; Hayden 2018; Kolling and O’Reilly 2018).

Correlates of value have been identified in multiple other neural areas including

dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dlPFC),

and striatum, alongside similar dynamics of mutual inhibition (Rushworth et al.

2012; Hunt et al. 2015; Strait et al. 2015). These findings point towards the conclu-

sion that choice emerges from the coordination of computations performed across

multiple distributed areas (Rushworth et al. 2012; Cisek 2012; Hunt et al. 2015).

So the question becomes, what does the vmPFC contribute to these processes, and

when does it become necessary for effective choice?

Damage to vmPFC affects how people make decisions, but not always in pre-

dictable ways (Fellows 2018; Burgess et al. 2000; Pelletier and Fellows 2021; Yu et al.

2020; Tranel et al. 2007). Generally, choices become less consistent after vmPFC

damage (Fellows and Farah 2007; Camille et al. 2011). One of the prevalent themes

is that vmPFC damage affects decisions in more complex settings, for example when

the demands of the task change, or where choices require integrating information

across multiple attributes (Fellows 2018). For example, in various settings, vmPFC

damage leads to differences in how attributes of items are selected or weighed up

for choice compared to control groups (Vaidya et al. 2018; Pelletier and Fellows

2021; Bowren et al. 2018).

2.3 Cognitive maps

Could these difficulties shown by vmPFC patients in more complex settings reflect

problems constructing value using a model of the environment? In the context

of later discussions in this thesis, it is worth making a distinction at this point

between using a model to simulate transitions in the environment, and selecting
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the appropriate model on the basis of context. To think about why these are

different, consider the following story (Fig.2.2):

Two neighbours are each hosting friends for dinner. They both head out
to the supermarket to get ingredients only to realise the supermarket
has closed for construction works. The bakery and the cheese shop will
be open. However, neither individual has ever navigated to the bakery
from the supermarket before.

Person One simply cannot imagine a journey that would take them to
the bakery from their current location, or the route from the bakery to
the cheese shop. Their only option is to follow their usual route home,
sad and frustrated.

Person Two has a different problem. Unlike Person One, they are
perfectly capable of determining how to get to the bakery. They know if
they turn left and go up the road, theyll be able to find the bakery. From
there, they could turn right and go to the cheese shop, but they also
know that if they turned left instead they would arrive at the cinema.
Person Two comes out of Oppenheimer three hours later. They loved
it.

Both of these people have a problem using cognitive maps to achieve the goal–

but the problem seems different in the two cases. Person One has a problem

with inference, in the sense that they lack knowledge of the transition structures

between states, or the ability to simulate these transitions (Fig.2.2b). Person Two

understands the transition structure, but they have a problem selecting the relevant

information in the context of their goal (Fig.2.2c). They include information

about a completely irrelevant state – going to the cinema – when their goal is

to buy groceries.

Note that both individuals will make similar mistakes in some settings. Specifi-

cally, they might both be likely to choose options which have been highly rewarded

in the past but are not relevant for the current goal. However, crucially this would

be for different reasons. For Person One, it is due to a reliance on habitual (model-

free) action. Person Two, in contrast, has a map of the world, but they fail to

constrain the map to the relevant information for achieving the goal. What deficits,

if either, do patients with vmPFC show?
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Figure 2.2: Depiction of three maps representing the task of buying bread and cheese
(a) The correct map for achieving this goal. (b) A deficient map which does not include
relational information. (c) A deficient map which fails to constrain options to goal-
relevant information. A different perspective on this is that the agent has an incorrect
state representation (where the notion of state is taken from reinforcement learning).

2.3.1 Using a map

There is some evidence implicating vmPFC damage in both types of deficits. Let’s

start with the first – planning using a model of the environment. This would be

critical for goal-directed behaviour as described at the beginning of chapter 1. In

particular, being able to use a cognitive map to guide choices allows agents to plan

towards goals rather than rely on reinforced action. A classic measure of knowledge

about transition structures has been inference – responses which reflect structural

knowledge about the world, where the conclusion could not have been drawn from

direct experience. This is just as true for inference in non-spatial domains as it

is in spatial domains (Behrens et al. 2018).

Some studies have suggested lesions to vmPFC in humans impair the ability

to make inferences (Koscik and Tranel 2012; Spalding et al. 2018; Wing et al.

2021). For example, in one task participants learned about multiple pairs of
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ordered stimuli, represented by abstract images (e.g. A>B and B>C). At the

end, the participants were tested on their memory for learned pairs, as well as

their ability to perform transitive inference across pairs (e.g. to infer that A>C

in the examples above, despite never being told this directly). VmPFC lesion

patients showed no difference in memory, but were impaired at making transitive

inferences compared to control lesion patients and healthy controls (Koscik and

Tranel 2012). This suggests that the patients have difficulty forming a map of

the relationship between items.

OFC areas more broadly in rodents seem necessary for decisions based on

inferred rather than experienced value (Jones et al. 2012). For example, in one

study rodents learned to associate two pairs of cues – A with B, and C with D.

Following this, one of the secondary items (B) was paired with a reward. After

lesioning OFC with muscimol, rats were presented with each cue. Control animals

reponded appetitively both to the experienced cue (B) and inferred cue (A), which

both signal reward. OFC-lesioned animals continued to respond to the directly

rewarded item (B), but not to the item predicting reward through inference (A).

One general question here concerns how these findings about inference processes

relate to anatomical divisions between lateral and medial OFC regions in primates.

Lateral prefrontal cortex has been associated with model-based planning in various

tasks (Gläscher et al. 2010; Tanji et al. 2007; Fermin et al. 2016; Bartolo and

Averbeck 2020; Smittenaar et al. 2013). One study found state prediction errors –

i.e. the surprise involved in making an unexpected transition between states – in

lateral PFC, suggesting it could be important for tracking one’s current position

within a map of states (Gläscher et al. 2010). Supporting this idea, disruption to

human dlPFC using theta burst transcranial magnetic stimulation reduced model-

based planning (Smittenaar et al. 2013). Given that medial and lateral PFC

regions belong to different anatomical networks (Carmichael and Price 1996), they

are likely to make different contributions to inference and model-based planning.

Notably, lesions to lateral OFC in both macaques and humans damage the ability to

attribute reward to its cause (‘credit assignment’), while lesions to medial vmPFC

30



2. Medial PFC and goal pursuit

disrupt value maximisation (Noonan et al. 2010; Walton et al. 2011; Noonan et al.

2017; Rudebeck et al. 2017).

Another consideration is how vmPFC may be interacting with other structures

important for inference. One of the earliest proposals for neural ‘cognitive maps’

was the hippocampus (O’Keefe and Nadel 1978; Redish 1999). A variety of cell

types–most famously place and grid cells–support spatial mapping in the hippocam-

pus and entorhinal cortex (O’Keefe and Nadel 1978; Hafting et al. 2005; Ekstrom

et al. 2003). Hippocampal neural ensembles encode ‘sweeps’ of potential paths

in freely moving rats at choice points in a T-shaped maze (Johnson and Redish

2007). These same architectures may support simulation using conceptual (non-

spatial) forms of knowledge (Addis and Schacter 2012; Eichenbaum and Cohen

2014). Recently, there has been evidence that damage to hippocampus impairs

model based inference in both humans (Vikbladh et al. 2019) and rodents too

(Miller et al. 2017).

Many tasks where the outcome of an inference is decoded in vmPFC activ-

ity also find hippocampal activity at choice (Barron et al. 2013; Barron et al.

2020; Park et al. 2021). Greater functional coupling between hippocampus and

vmPFC predicts better inference based on recalled relationships (Zeithamova et al.

2012). One possibility given these findings is that vmPFC is involved in recruiting

computations for the current task, while the inference itself is computed in other

areas such as hippocampus.

To summarize, it is possible vmPFC damage impairs goal-directed behaviour

partly because it impairs the ability to make model-based inferences. However,

the distinct contribution of vmPFC to this process is unclear. In chapter 6 of

this thesis, I investigate whether vmPFC damage affects model-based planning

using two previously established tasks from the planning literature (Two-Step and

Four-in-a-row). In general, I do not find evidence supporting the disturbance of

model-based planning generally, but I do find alterations in behaviour related to

selecting relevant information. It is possible that vmPFC impairments in model-

based inference concern difficulties selecting and coordinating computations in
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other regions. With this in mind, in the next section I review the idea that vmPFC

is important for selecting the appropriate map.

2.3.2 Selecting a map

Whether or not vmPFC is necessary for making all model-based inferences, another

idea is that vmPFC is particularly important for selecting which map to use. In

other words, these regions might be critical for representing appropriate dimensions

for guiding behaviour, while ignoring task-irrelevant dimensions. This brings a

different perspective to some of the earlier ideas concerning subjective value. In this

context, vmPFC may be critical when decisions require selecting and representing

the appropriate pieces of information in context-dependent situations.

It is well established that value correlates in vmPFC shift dramatically depend-

ing on context. An example of this is the effect of homeostatic needs on neuronal

firing patterns. There is a decrease in vmPFC neurons selective to water when

monkeys are no longer thirsty (Bouret and Richmond 2010). In the domain of

mood, it has been shown that positive mood manipulations enhance the effect of

subsequent rewards on vmPFC activity in humans (Young and Nusslock 2016). In

both these cases, changes in underlying behavioural state alter the reward response

in vmPFC. However these observations alone could be explained by changes in the

hedonic reward properties of water (less pleasurable when no longer thirsty), or of

reward (less pleasurable when in low mood).

Stronger evidence for the flexibility of these value signals come from findings

demonstrating vmPFC activity dynamically adapts to abstract task rules or be-

havioural goals (Rudorf and Hare 2014; Grueschow et al. 2015; Frömer et al.

2019; Castegnetti et al. 2021; Trudel et al. 2021). In one recent study, Trudel

and colleagues found that uncertainty had opposite effects on vmPFC activity

depending on whether the individual was in an explorative state near the beginning

of a trial (positive effect of uncertainty), or an exploitative state later on (negative

effect of uncertainty). The authors argue this can be explained by an adaptation

of vmPFC signal to the individual’s behavioural goals – namely whether their goal
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is to ‘explore’ for new information, or ‘exploit’ their existing knowledge (Trudel

et al. 2021). During early learning about potential predictors, uncertainty indi-

cates opportunities for new information, leading to positive vmPFC signals. Once

valuable predictors have been identified, uncertainty is avoided since it decreases

the expected value of the outcome, and therefore is negatively signalled in vmPFC.

This finding chimes with various other fMRI studies showing vmPFC signals

do not reflect a context-neutral evaluation, but flexibly change depending on how

appropriate the choices are for the current task. Castegnetti and colleagues de-

signed a study where objects were chosen on the basis of their usefulness for

achieving different goals (Castegnetti et al. 2021). A metal chair will be more

useful when the goal is to anchor a boat, but a wooden chair will be more useful if

the goal is to light a fire. The authors found vmPFC encoded the degree of goal-

dependent usefulness, rather than a simple preference between objects based on

prior subjective valuation. Another striking demonstration of this is the observation

that vmPFC activity reverses for the very same options when the instruction

is to select the “worst” rather than “best” item, showing clear goal-congruent

rather than hedonic representations (Frömer et al. 2019). Taken together, these

studies suggest vmPFC signals reflect the value of options contextualised by an

individual’s current task.

2.4 Context-dependent choice

If it is true that vmPFC plays a role in selecting context-dependent dimensions

for choice, at what point does this become important? Or to put the question

differently, when might we expect damage to vmPFC to be particularly impeding?

There are three kinds of scenarios that I discuss below. First, when context-

dependent choice cannot be known through observable information, vmPFC might

be particularly important (Wilson et al. 2014; Schuck et al. 2016). Second, it

may be critical in cases when decisions require complex integration of different

dimensions (Pelletier and Fellows 2021). Finally, it may be important for guiding
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decisions in the face of crowded sources of value, competing for attention. In the

following section, I review these three ideas.

2.4.1 Non-observable state information

Deciding whether to wear a new pair of shoes will depend on whether you are

going on a hike (consider: are they waterproof?) or going to a fancy dinner

(consider: are they formal?). In cases like this, the current context is not visually

observable, but decisions must reflect knowledge of hidden state variables. Some

authors have argued the ability to represent these hidden variables in vmPFC

will become critical when decisions depend on information which is not observable

(Wilson et al. 2014; Schuck et al. 2016).

An helpful way of viewing this is informed by the computational concept of

a ‘state’ in reinforcement learning (Wilson et al. 2014). As briefly described in

chapter 1, the notion of a state describes the collection of information which

is relevant for a decision (Sutton and Barto 1998). The critical idea is that

states contain all the information which determine (a) the probability of immediate

reward, and (b) the probabilities of transitioning to other states in the task, and

their values. This is what gives RL problems what is known as the ‘Markov

Property’ – the feature that the future is only dependent on the current state,

independent from the history of past choices and states. In order to have such a

property, state information might include observable variables (such as the stimulus

on the screen), but also unobservable variables (such as the current task rule).

According to this theory, activity in vmPFC more generally encodes variables

defining the task-specific state, i.e. the set of relevant information to make value-

guided decisions in a particular task (Wilson et al. 2014; Schuck et al. 2016). In a

canonical study establishing this idea (Fig.2.3), participants were presented with

superimposed pictures of faces and houses and asked to report the age (young/old)

of one of the categories (Schuck et al. 2016). Critically, whenever two sequential

images were of different ages, the participant had to switch to reporting the age

associated with the other category. To make the correct response, the relevant
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Figure 2.3: VmPFC encodes unobservable state variables relevant for making decisions.
Reprinted with permission from Schuck et al. (2016). a Correct responses in this task
depended on three hidden variables: the previous relevant category (house/face), the
previous age, and the current relevant category. b The conjunction of these three hidden
variables could be decoded in vmPFC.

information included the age and category of the previous image, as well as the age

and category of the current image. All relevant but non-observable variables could

be decoded from vmPFC, while no irrelevant variables could be reliably decoded.

The authors argued this suggested vmPFC held the relevant ‘state representation’

– all the (unobservable) information needed to make the right response.

In support of this theory, Bradfield and colleagues compared versions of a deval-

uation study with and without observable outomces. Rats with lesions to mOFC

continued to perseverate with performing the devalued action in the unobservable

condition, but not in the observable condition (Bradfield et al. 2015).

2.4.2 Integrating dimensions

VmPFC is also critical in cases where choices depend on a complex integration of

value dimensions (Pelletier et al. 2021). This can be seen as an example where

being able to select the correct map will be important because the weighting of

different dimensions is context-dependent. In one task, Pelletier and colleagues

(2021) presented subjects with objects whose value was determined either by sum-

ming the individual dimensions, or through a configuration of dimensions. In the

‘configuration’ condition, an object’s value was determined by the unique pairing

of elements. Individuals with vmPFC lesions were impaired at making configural

evaluations but not when evaluating the sum of the parts.
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How could the vmPFC integrate dimensions to guide choice? Some have

argued the value comparison process emerges as the product of a cognitive map

– a space which allows dimensions to be integrated or compared (Behrens et al.

2018). There is currently much interest in the idea that the vmPFC – similarly to

the hippocampus – contains ‘grid-like’ activity which is modulated in a hexagonal

manner (Constantinescu et al. 2016; Behrens et al. 2018; Park et al. 2021; Veselic

et al. 2023). This has been proposed as a potential mechanism for structuring the

relational knowledge in order to form comparisons, in conceptual or value space

(Behrens et al. 2018). For example, in one study (Park et al. 2021), participants

learned about pairs of individuals in a 2D social space (individuals ranked by

‘popularity’ and ‘competence’). Inferences about the value of individuals across

previously unexperienced pairs were supported by grid-like activity in both entorhi-

nal cortex and vmPFC. Recently it has been argued that value-based inference

choices in rodents are also made in this way: grid-like codes in vmPFC flexibly

re-map to reflect the inference in value space akin to the way that hippocampal

grid cells remap to new locations in spatial maps (Veselic et al. 2023). However,

the particular claim that vmPFC activity encodes all value using grid-like codes

is contested (Lee et al. 2021; Vaidya and Badre 2022). One large study explicitly

compared the subjective value hypothesis to a grid code hypothesis in vmPFC

activity during an intertemporal choice task, and found no evidence for grid-like

coding frameworks (Lee et al. 2021).

2.4.3 Ignoring irrelevant information

Another situation in which the ability to select relevant information will become

critical is when irrelevant sources of value compete for attention. Distraction by

irrelevant value has a larger effect on vmPFC patients. In one task people learned

to associate three items with changing levels of reward. In both monkeys and

humans, vmPFC damage caused interference from the value of the lowest (third)

option, which should be irrelevant for the choice (Noonan et al. 2010; Noonan

et al. 2017). A possible explanation is that damage impairs the capacity to orient
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Figure 2.4: VmPFC and compression of irrelevant information. Reprinted with
permission from Mack et al. (2020). a The task required categorising beetle stimuli on the
basis of either one dimension (left), two dimensions (middle), or three dimensions (right),
where dimensions corresponded to visual features such as antenna length. b VmPFC
activity correlated with the degree of task compression, where neural compression was
measured as the complexity of neural representation using principal component analysis.

attention to the relevant items for consideration, rather than be distracted by

competing but irrelevant value (Gluth et al. 2018; Gluth et al. 2020b).

There is also evidence in healthy participants that vmPFC is involved in com-

pressing across irrelevant information (Mack et al. 2020; Leong et al. 2017). In

one study (Mack et al. 2020), participants learned to categorise beetles on the

basis of visual features, such as the size of their antennae (Fig.2.4). Participants

learned different versions of the task, where the beetle’s category could depend on

one feature, the conjunction of two features, or the conjunction of three features.

Learning the task therefore required selecting the relevant feature(s), and compress-

ing the irrelevant features, where the degree of compression scales inversely with the

number of features required to make the categorisation. VmPFC was the one area

where neural compression (the complexity of neural representation measured using

principal component analysis) correlated with the inherent compression in the task

(Fig.2.4). In addition, the extent to which participants selectively attended to the

correct information (predicted by a computational model) correlated with subject-

specific vmPFC compression. This suggests vmPFC may be involved in reducing

the dimensionality of input to select only what is relevant for the current context.
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To what extent do these areas actively suppress signals of irrelevant value?

Mahmoodi and colleagues used a social decision task which required participants to

judge pairs of faces on the basis of three different social dimensions (Mahmoodi et al.

2023). Continuous theta burst transcranial magnetic stimulation (cTBS) was used

to causally disrupt activity in anterior mPFC and anterior insula (AI). AmPFC was

found to be important for mediating interference from irrelevant dimensions, while

AI enhanced the relevant dimension. On incongruent trials (where the ranking

of the individuals being compared differed across the dimensions), disruption to

amPFC increased interference from the irrelevant social information. Crucially, this

was not due to a noisier comparison, but specifically an increase in the impact of

irrelevant value on these harder incongruent trials. In comparison, disruption to AI

also impaired performance, but this time through a decreased impact of the relevant

dimension value difference, and did not affect use of irrelevant information. It is

worth noting the region found here is considerably more dorsal than the vmPFC

areas discussed above, but provides a lens for considering how mPFC generally

might contribute to selecting relevant information.

These observations that vmPFC could help to guide behaviour in the face

of competing ‘maps’ is consistent with findings from a different corner of the

literature. Another perspective on vmPFC damage has focused on observations of

‘confabulation’ (Moscovitch 1989). In these cases, patients report and continue to

believe wildly falsifiable claims even when the relevant information for discounting

them is available. This has led to the development of theories that vmPFC is

necessary for the use of ‘schemas’ or contextual frameworks to guide memory recall

(Ghosh et al. 2014; Spalding et al. 2015; Farovik et al. 2015; Warren et al. 2014).

The concept of a schema refers to structures of memories which link experiences

in similar contexts (Bartlett 1932). For example, swimsuit and ice-cream belong

to the schema of ‘beach’, while hammers do not. Various studies have suggested

that vmPFC damage impairs use of the appropriate schema (Ghosh et al. 2014;

Spalding et al. 2015). For example, in one study vmPFC lesion patients and

controls were asked to report whether words were related to a schema (“a visit
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to the doctor”). Later, they performed the same task with a new schema (“going

to bed”). Patients with vmPFC damage failed to reject lures belonging to the

previous schema, suggesting a problem with retrieving information for the right

context (Ghosh et al. 2014). Another way of interpreting this is that vmPFC

lesion patients were unable to suppress information related to dimensions of the

task which were now irrelevant to the current goal.

2.4.4 Summary

In the last section, I reviewed the idea that vmPFC plays a role in selecting the

correct map to guide choices in the context of the current task or goal. I discussed

three decision scenarios where this capacity may be particularly important. First,

when the goal or other relevant information is not visually observable. Second,

when choices depend on integrating value dimensions according to complex criteria.

Third, when goals must be pursued in the face of irrelevant forms of information,

competing for attention. This last case resembles the story earlier, where Person

Two has the goal of buying groceries but ends up in the cinema because irrelevant

information creeps into their state representation. This idea will be particularly

important for understanding the results of chapter 5 in this thesis – where vmPFC

damage causes patients to abandon their goals more. In the final section of this

chapter, I turn to a different question. If vmPFC is critical for selecting the right

map to pursue a goal, how do we evaluate the goals themselves?

2.5 Escaping goals and dACC

If vmPFC selects goal-relevant material, do we escape bad goals? A body of

literature has identified dACC (see Fig.2.1a for anatomy) with an activity profile

which could support longer-term decisions to re-evaluate behavioural strategies

(Heilbronner and Hayden 2016; Holroyd and Verguts 2021; Kolling and O’Reilly

2018). For example, dACC activity predicts decisions to abandon the current

patch in foraging paradigms (Fig.2.5). In these ‘patch-leaving’ tasks, animals are
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Figure 2.5: Evaluating abandonment in dACC. Brain image reprinted with permission
from Kolling et al. (2012). In foraging paradigms, dACC correlates with the long-term
value of leaving the current patch and pursuing alternatives, and is more active when
participants choose to abandon.

presented with rewards which slowly deplete over time. At any point the animal

can choose to stay and continue accepting the current reward, or leave, in which

case they must wait for a long delay before the reward is reset to its original value.

Over the course of the reward depleting, the firing rate of dACC neurons gradually

increases until a threshold is reached and the animal chooses to leave (Hayden

et al. 2011). This could be considered a case of dACC activity tracking the longer

term value of the goal itself. In scenarios where animals are presented with choices

to accept or reject prey, dACC signals also correlate with the value of rejected

options, as if estimating the value of alternative paths of action (Blanchard and

Hayden 2014). Finally, the dACC has been shown to track long-run trends in

reward which could help predict when a goal is no longer worth pursuing (Kolling

et al. 2016; Wittmann et al. 2016).

One recent study found separate neural circuits within rodent dACC supporting

two kinds of foraging decisions: the decision to switch to a new strategy (goal

disengagement), as well as the decision to commit to a new alternative (goal

selection) (Tervo et al. 2021). These observations are consistent with the idea
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that the primary role of ACC is in goal selection, including disengagement if the

goal goes awry (Holroyd and Verguts 2021).

The dACC is also active when people decide to switch between exploiting a

current option and exploring the environment (Trudel et al. 2021). In fact, when

people switch out of an exploitative state towards exploration, dACC activity

predicts subsequent changes in task representation in the vmPFC (Muller et al.

2019), supporting the theory that it could be setting goals subsequently supported

by vmPFC activity. Taken together, this set of studies suggests a potential role for

dACC in the hierarchy, which involves the evaluation of goals themselves.

2.6 Summary

In this chapter, I reviewed the ways in which vmPFC and dACC could support

pursuit of goals. In particular, vmPFC may play a critical role in selecting relevant

information in the context of current goals. On the other hand, dACC could

support longer-term decisions to select and re-evaluate goals.

In the following chapters, I investigate the contribution of both of these areas

to goal pursuit. This involves an fMRI study in chapter 4, and studying the

impact of vmPFC damage in lesion patients in chapters 5-6. The results build on

the ideas of this chapter, suggesting vmPFC is necessary for constraining decisions

to the context of current goals. In chapters 3-5, this is investigated using a

new task where individuals must flexibly switch between goals. VmPFC shows

sustained activity predicting commitment and attention to current goals, while

dACC is implicated in decisions to abandon. When vmPFC is damaged, patients

are more engaged by alternative goals, suggesting that in healthy people, vmPFC is

playing a role in constraining the decision space to the currently pursued goal. This

capacity will be critical in complex environments, where goals must be pursued in

the face of vast quantities of irrelevant information. In chapter 6, I find that

the deficits caused by vmPFC damage in planning are linked to the tendency to

overlook relevant valuable features in complex settings. Bringing these chapters
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together, I will argue this area supports goal pursuit by selecting and integrating

the relevant information to guide behaviour in light of the current goal.
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3
Balancing commitment and abandonment

during goal pursuit

This chapter sets up the behavioural paradigm and framework which is later used

in the fMRI study (chapter 4) and lesion patient study (chapter 5). When

striking the balance between commitment to a goal and flexibility in the face of

better options, people often demonstrate strong goal perseveration. It is unclear

how this goal commitment bias develops during pursuit of a goal, or how it responds

to different forms of pressure. To study this, we develop an incremental goal

pursuit task involving sequential decisions between persisting with a goal versus

abandoning progress for better alternative goals. The task design allows us to

disentangle the effects of different forms of pressure on peoples’ tendency to persist,

such as the rate of progress, or the impact from alternative options at different

points in pursuit. By interleaving an additional spatial working memory task be-

tween decisions, we identify how attentional biases develop over the course of goal

pursuit in a setting outside the decision context. We find that individuals with

stronger goal commitment show higher goal-directed attention in the interleaved

task. Increasing goal-directed attention also affects abandonment decisions: while

pursuing a goal, people lose their sensitivity to valuable alternative goals, while

remaining more sensitive to changes in the current goal, shown through both choices
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and reaction times. Rather than representing commitment biases as a (perhaps

irrational) factor in the decision process itself, we argue it is better understood

in terms of a more pervasive attentional effect: Mechanisms of selective attention

prioritise processing of the current goal over alternative goals, resulting in reduced

sensitivity to attractive alternatives.

3.1 Introduction

In natural environments, many goals – whether it be pursuing prey, cooking dinner,

or writing a thesis – are only obtained after persevering through a substantial

period of unrewarded time and effort. In all these cases, optimal behaviour requires

balancing commitment to the current goal against flexibility to abandon if the goal

is no longer worth pursuing relative to alternatives. Psychiatry and neuroscience

have tended to focus on failures of commitment during extended behaviours (Heron

et al. 2019; Dalley and Robbins 2017; Kouneiher et al. 2009). However, behavioural

economics provides us with ample examples of people showing too much commit-

ment to a goal, particularly after investing time or money (Arkes and Blumer 1985;

Mcafee et al. 2010; Ronayne et al. 2021). These ‘sunk-cost’ biases are not unique

to humans, but have been found in rodents too (Sweis et al. 2018).

Why might animals show biases towards over-persisting with a goal? When

behaviour is structured by sequential goals, constant re-evaluation can be both

expensive and distracting. In consequence, it has been proposed that distinct

phases of ‘deliberation’ (evaluation of available options) and ‘implementation’ (com-

mitting cognitive resources to achieving the chosen goal) might be present in both

humans and non-human animals (Heckhausen and Gollwitzer 1987; OReilly 2020;

Ludwig et al. 2020; Li et al. 2019; Molinaro and Collins 2023; Sweis et al. 2018).

However, a picture involving entirely discrete decision phases fails to explain how

animals remain flexible to goal abandonment when the situation requires it. As

discussed in chapter 1, a plausible mechanism would allow for the agent both
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to preferentially allocate processing resources to goal completion, while retaining

the necessary flexibility.

A candidate mechanism for such flexible focus on a goal is selective attention,

specifically towards information about the chosen goal. Attentional selection need

not be all-or-nothing, but can vary in strength as the need to exclude distractors

varies (Lavie 2005), thus allowing for flexibility. In ecological scenarios, we are faced

with different reasons for abandoning a goal: progress might be too gradual or might

reverse; alternatively other options might become significantly more attractive.

These different forms of pressure give rise to different emotional responses: frustra-

tion (with the current goal) in the former cases (OReilly 2020), and temptation (by

alternative goals) in the latter. If selective attention to the chosen goal increases

over the course of goal pursuit, this leads to a rather specific prediction about the

interaction of ‘temptation’ and ‘frustration’ with increasing proximity to the goal:

namely, sensitivity to the value of alternative goals (‘temptation’) should decrease

more than sensitivity to the value of the chosen goal (‘frustration’).

The aim of this chapter was to investigate how commitment biases emerge over

the course of goal pursuit. Specifically, we tested our hypothesis that attention and

decision-making show these markers of increasing attentional orientation towards

the current goal. To probe this, we developed a novel sequential choice task, where

participants advanced incrementally towards completing a chosen goal in the face

of alternative goal offers. We orthogonally varied the value of the current goal

and the value of alternative goals at the decision, as well as continuously measured

goal-oriented attention outside the decision period.

Our task design allowed us to disentangle the effects of different forms of

pressure on peoples’ tendency to persist, such as the rate of progress towards the

current goal, or the impact from alternative options at different points in pursuit.

Subjects were rewarded each time they amassed a target quantity of goods, which

required collecting that good across several trials. Crucially, if subjects switched

to a different type of good they sacrificed all the goods accumulated thus far,

abandoning their existing goal. Since the aim was to maximise reward across the

45



3. Balancing commitment and abandonment during goal pursuit

study, goal abandonment was often preferable if progress with the chosen good

was unsatisfactory or an alternative good became more abundant. In addition,

we looked at how goal pursuit affected people’s performance in an intermediate

spatial attention task performed at regular intervals (before each decision), which

was irrelevant for goal progress.

We found that participants showed a universal ‘goal commitment’ bias to-

wards persisting with their current goal, even in circumstances when they would

greatly benefit from abandoning it. We were able to measure several markers

of selective attention to the current goal. First, as predicted by the attentional

account, decision-making and reaction times reflected goal-oriented attention: as

participants approached goal completion, their responses remained relatively more

sensitive to the value of the current goal, than to the value of alternatives. Second,

using a separate spatial working-memory task, we found that even outside the

decision period, stimuli related to the current goal were increasingly prioritized in

attention. Finally, individual differences in commitment bias were predicted by

goal-oriented attention measured outside the decision period.

3.2 Methods

3.2.1 Participants

Prior to collecting the cohort of participants for our MRI study, we piloted the

task extensively on Prolific.co. Here we present the behavioural results from the

MRI cohort, to lay the groundwork for upcoming chapters. A total of thirty-one

participants (19 female; mean age 25 years, normal or corrected-to-normal vision)

were recruited via email circulation on Oxford University mailing lists and social

media. One participant was excluded from the recruited sample because they opted

out of the study before the MRI scan, leaving a total of 30 participants whose data

is analysed in this thesis. Ethical approval for the MRI study was obtained by

the Oxford Central University Research Ethics Committee (Ref: R72921/RE001).
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All participants gave written informed consent before the experiment. Participants

were paid £15/hour plus a performance-dependent bonus between £8-12.

3.2.2 Experimental paradigm

Primary decision task

We developed a “fishing net” task where participants were incentivised to fill as

many nets with seafood as possible over the course of the study Fig.3.1. Partici-

pants accumulated seafood “goods” over several trials, and gained a single point

when a net was full. On each trial, participants chose between offers for three types

of goods (octopus, crab, or fish), where the quantity available for each good was

shown by a green bar. Once selected, the exact offered quantity would be added

to the net. Importantly, only a single type of good could be collected in the net

at once. This meant that if participants chose a different type of good to the type

currently in their net, they would forfeit all their previously accumulated goods

(‘abandonment choice’). Alternatively, participants could choose to continue with

the current goal by selecting the same type of good already in the net (‘persistence

choice’; Fig.3.1a for example). The horizontal order of the three creatures on

the screen was randomised on every trial to avoid confounding persistence with

motor perseverance.

At the start of each block, participants were shown the size of the net to be

filled as an empty grey bar at the bottom of the screen. Blocks ended when a net

was complete, and a point was won. Participants were therefore incentivised to fill

as many nets as possible across the study, limited only by the number of choice

trials in the study. The number of trials remaining in which the participants could

continue to fill nets was shown in the top right corner of the screen throughout

the study (Fig.3.2). Above this was shown the number of points earned (nets

completed thus far), where each completed net was converted to a 25p bonus

payment at the end of the study.
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Figure 3.1: Decision task. (a) Participants performed a fishing net task which involved
incrementally filling nets with seafood goods. Top panel: The current net was shown
at the bottom of the screen (grey bar), and participants incrementally filled it with
seafood across several trials. The net icon indicated the current type of good in the net
(for example, octopus), while the blue bar indicated the aggregated quantity. On each
trial, green bars indicated the current available quantities for each type of good (octopus,
crab, or fish) which participants could add to their net. Critically, since the net could
only contain one type of good, switching goods meant forfeiting the aggregated quantity.
Bottom left: If participants continued with the same good, the offered quantity was
added to the aggregated quantity. Bottom right: If participants chose a different good,
the aggregated quantity was emptied before the new goods were added. Participants
received a single reward when a net was completed, and the net size and option offers
were re-set. (b) An example block where a participant switches goals twice. Top panel:
Coloured lines depict the offers associated with each type of good across a block. Black
dots depict the chosen good on each trial. During a block, the offers associated with each
good varied gradually across trials with independent random walks, but could also jump
to extreme high or low values (from where the random walk would continue). Bottom
panel: Bars depict the goods accumulating in the net until completion.
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Figure 3.2: Choice visuals. At the time of choice, participants saw the three offers on
the screen, the current contents and size of the fishing net. They were also shown the
number of trials remaining, and the total points (corresponding to nets completed) in
the top right. Participants were incentivised to use each choice as efficiently as possible
to maximise points won within the limited number of trials.

Offer trajectories While the quantities offered for each type of good usually

drifted gradually from trial-to-trial (random gaussian walk with low variance),

sometimes the quantity would drastically change for a given a good (10% chance

of a large shift up or down in quantity, independent for each type of good; see

Fig.3.1b for example offer trajectories across a block). If the quantity associated

with the current goal good collapsed or if an alternative good became much more

bountiful, participants often benefited from abandoning their progress and switch-

ing to an alternative good. Participants were explicitly instructed that generally

the quantities of creatures change slowly but sometimes a particular population of

sea creatures would suddenly enter or leave the current fishing patch.

Specifically, for each block (commencing with a new net), the size of the net and

the option offers differed. The net sizes were drawn from a uniform distribution

(min=12, max=72). The initial values for the three options were drawn indepen-

dently from a normal distribution at the start of each block (µ=6, σ2=1). From

trial to trial, the offers for each option changed according to independent gaussian

random walks (σ2=0.8). In addition, on each trial there was an independent

probability of any option changing more drastically in its associated offer (p=0.1

jump up, p=0.1 jump down), corresponding to an option becoming significantly
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more ‘bountiful’ or ‘scarce’ for fishing opportunities. The jump function consisted

of drawing a random value between 3 to 9 points higher or lower than the option’s

starting offer, which corresponded to the new offer for that item. After a jump, the

subsequent offers for that option would continue to change according to a random

gaussian walk from the new starting location.

Offers were mostly positive (indicated by green bars), but could occasionally

become negative (indicated by a red bar). If a negative offer was selected, the

quantity of the bar would be subtracted from the net. Once a net was empty,

nothing more could be lost so choosing a negative offer would lead to no change.

Schedule variants To minimise schedule-specific artefacts, we generated 5 dif-

ferent schedules which each consisted of 45 blocks of 100 trials. A block ended

when the net was filled. In order to select pairs of net sizes and option offers for

which completing the net was non-trivial yet feasible, we chose combinations where

goals were completed in more than 3 trials and less than 15 trials when choice

behaviour was simulated using the tree-search model. Participants on average

viewed only 7 trials per block before completing the net. For each participant,

separate schedules were randomly selected for the within-scanner and post-scanner

sessions. In the lesion patient study (chapter 5), the same schedule was used

across all individuals (including age-matched controls) due to the limited sample

size for lesion patients. Each session ended after a pre-determined number of trials

(300 in the fMRI session, 100 in the post-scan session, and 250 for all participants

in the patient study), so no participant was able to complete all 45 blocks of a

schedule within the available experimental trials.

Attention task

In addition to the main decision task, participants performed an interleaved spa-

tial attention task before every trial, providing a separate measure of attentional

capture by the current goal (Fig.3.3). Participants viewed the stimuli associated
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with the three goods flash on the screen for 500ms in random locations. Subse-

quently, each creature icon appeared sequentially in the top right corner of the

screen, prompting participants to respond by using their mouse to click at the

location where they remembered it appearing. The three stimuli were probed in a

random order. While the attention task involved the same stimuli as the decision

task, participants were explicitly told that memory performance would not impact

subsequent offers in the decision task.

Experimental procedure

The data presented come from two sessions: one session inside the scanner (scanner

session) and one session outside the scanner (post-scan session). It was not possible

to interleave the attention task during the scanner session due to the practical

difficulties of eliciting spatial responses with a button box. In the scanner session,

the decision task was performed alone, while in the post-scan session, the attention

and decision task were performed sequentially on every trial. The training, scan

and post-scan task were all carried out in a single session lasting 2.5-3 hours total.

Before the scan, participants were trained on the task for approximately twenty

minutes. Participants practiced on three full example blocks (on average approx.

25 trials, dependent on performance) with the interleaved spatial attention task

included, and one additional example block without the spatial attention task

(scanner version). Comprehension questions were included at the end of training

to ensure that participants had understood the task structure. Once this had been

verified, participants entered the scanner and completed 300 trials of the decision

task only lasting 50-60 minutes (scanner session). Participants then completed the

spatial variant of the task for an additional 100 trials outside of the scanner, lasting

approximately 20 minutes (post-scan session). Once the post-scan session was

complete, participants filled out a short debrief questionnaire. The experimental

task paradigm was created using PsychoPy (Version v2021.1.2).
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Figure 3.3: Task sequence. To measure the influence of goal pursuit on spatial attention
outside the decision context, we interleaved an attention task before every decision. In
the attention task, participants viewed the three goods flash on the screen in random
locations, and were then probed on the location of each good. Participants knew
their performance in the attention task had no impact on subsequent offers. Note the
interleaved spatial task was only performed outside the scanner. Inside the fMRI scanner,
participants performed the decision task by itself (due to the practical limitations of
indicating spatial responses with a button box).

3.2.3 Models and Analysis

Model-free analyses

We began by performing simple analyses to verify that people were sensitive to

the primary elements of the task. Using a logistic regression, we predicted aban-

donment decisions on the basis of the current goal offer, the best alternative offer,

the worst alternative offer, and the current contents of the net. We also looked at

reaction times, to determine if the same predictors (with the addition of a binary

regressor capturing whether the decision was to stay or abandon) affected how

quickly people responded, using a linear regression model.

Modelling

Because of the need to commit to a good for many trials in order to realise the

reward (delivered on the completion of a full net), a good decision is based not only

on the current offer, but also the quantity already in the net and projections of

future offers. To understand how participants made such choices, we constructed

a series of models reflecting increasingly complex possible strategies. Five mod-

els with increasing complexity were tested as candidates for describing peoples’

subjective evaluation of the offers (Fig.3.4):
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1. Offer-max model. The agent chooses the largest offer on screen, regardless

of the accumulated contents in the net. The value of persisting is therefore

equal to the offered quantity for the current goal good, while the value of

abandoning to either alternative is also equal to its current offer.

2. Myopic model. The agent maximizes the contents of the net on the current

trial. This means they will only switch if an alternative offer is greater than

the combined accumulated goods and offer for the current goal good. For

this model, the value of persisting is equal to the accumulated goods plus the

goal item offer, while the value of abandoning to either alternative is simply

equivalent to their current offers.

3. Simple prospective model. The agent calculates how much progress

towards the goal each offer will entail, where progress is the proportion of the

remaining unfilled net that will be completed after choice. Intuitively, this

model values each option based on how long it will take to fill the net, if the

offers were to stay the same over subsequent trials. The value of persisting is

therefore the offer for the current goal item divided by the un-filled length of

net. The value of abandoning to either alternative corresponds to their offers

divided by the full length of net (since switching would require starting from

scratch).

Vgoal = Ogoal

T − G
(3.1)

Valt = Oalt

T
(3.2)

Where O refers to the current offer for that item, T refers to the target

quantity (size of the current net), and G refers to the quantity of goods

already accumulated in the net.

A central difficulty for a model which estimates value in this way is dealing

with negative offers. Negative offers would reverse the respective values,

meaning that implausibly, negative offers associated with the goal good are

valued lower than negative offers associated with alternative goods. To
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address this problem, we set the value of negative offers associated with

alternatives to their raw (negative) offer, and the value of negative offers

associated with the goal option to the proportion of progress they would be

losing i.e. the offer divided by the accumulated value.

4. Stochastic tree-search. This agent uses information about offer trajecto-

ries to simulate possible futures for the different candidate options, choosing

the option which is forecasted to complete the net fastest. Specifically, it

samples possible future trajectories for the three options and calculates each

option value as the (negative) average number of trials until net completion

across the iterations, if it were chosen on this trial.

The same statistics used for creating the experimental offers were used when

the model simulates the future trajectories of the options (procedure de-

scribed in Block Generation). In other words, this model possesses task

knowledge of how offers are likely to change over time, and leverages that to

compute a better estimate of how long each option will take to fill the net.

Formally, this consists of calculating value in the following way according to

a Monte Carlo procedure:

Q(s, a) = 1
N

N∑
i=1

−Ti(s, a) (3.3)

Where N is the number of iterations, which we set as 10000, Ti is the number

of trials to complete a net across a simulated trajectory, s defines the current

state (the size of the net, the accumulated contents inside the net, and the

type of good in the net), and a denotes a particular choice (octopus, crab,

or fish). Note that if the agent chooses to persist, then the distance to goal

completion will be shorter given that goods have already been accumulated.

This means −Ti will typically be higher (depending on the current offers) and

thus persisting will typically be preferred.
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5. Stochastic tree-search with switching. In model 4, the simulated tra-

jectories assume that once an option is chosen, the agent will persist with

that particular option until goal completion. In model 5, we extended the

model to allow the possibility for an agent to switch within the simulated

trajectory, at any time-step. In other words, the agent calculates each option

value as the (negative) average number of trials until net completion if they

started with choosing that option but are able to switch to another option

subsequently. In other words, this model not only possesses knowledge of

how the options could change, but also anticipates future switches.

This model requires a separate value estimate to be used to determine choices

within the simulated trajectories. Since it is too computationally demanding

to use nested sampler models (i.e. the recursion of sampling trajectories

within each sampled trajectory makes this model untenable), we instead chose

to use the value from model 3, i.e. simple prospective value, for the value

estimates determining switching within simulated trajectories.

Since the final tree-search model takes into account the total relevant statistics of

the task and all possible actions to estimate value (using a monte carlo sampling

procedure), it provides an approximation of the optimal choice in this setting

(Metropolis and Ulam 1949; Browne et al. 2012).

Model Fitting

The decision in this task can be framed either as a choice between three items,

or as a choice to persist with the current goal versus abandon for an alternative

goal. Initial behavioural analyses revealed that (i) Participants chose the worst

alternative offer on fewer than 1% of trials and (ii) The worst alternative offer

had no significant impact on either choice behaviour or reaction times. Since this

suggests participants were treating the decision as a binary choice between the

current goal and best alternative, we decided to model behaviour using a logistic

regression capturing decisions to abandon or persist with the current goal.
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Figure 3.4: Behavioural Models. (a) Graphic of the four final models which were fit to
participant data. (b) Simulated abandonment behaviour of the four models, compared
to participants. Abandonment is quantified as the percent of decisions (after initial
goal choice) to abandon the current goal. (c) Performance of the models, compared to
participants. Performance is quantified as the mean number of trials to complete the
goal, where lower scores indicate faster goal completion (better performance).

For each model, the value of switching was calculated as the model’s value for

the current goal subtracted from the model’s value for the best alternative goal:

Vabandon = β0 + β1(Valt − Vgoal) (3.4)

Where Valt is the value of the best alternative option, and Vgoal is the value

of the current goal. To determine the best fitting normative model, we predicted

choices using mixed effects logistic regression models, where intercept and slope
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were modelled as random effects across participants.

We then compared performance across models using a leave-one-out cross val-

idation process to evaluate between models, since the models differed in their

conceptual complexity but not in the number of fitted parameters. For each

participant, we fit each of the mixed-effects model to the choices of all other

participants (n = 29). For the held-out participant, we then computed the pre-

dicted abandonment value for each trial, and transformed this into the predicted

probability of switching using the soft-max function:

Pabandon = 1
1 + e−SVabandon

(3.5)

We took the absolute difference between the predicted probability of switching, and

each held-out participant’s true responses, and subtracted from 1 to compute the

model accuracy for each participant separately. This allowed us to evaluate both

the overall accuracy of each model in predicting choices, as well as the frequency

of best-fitting models across participants. We also separately assessed the ability

to predict abandonment trials and persistence trials, assessing the accuracy of each

model for the two trial types separately.

Model Validation Process We performed a model recovery analysis, to confirm

that we could successfully recover each generative model from its simulated data.

This process revealed that no models were confused with each other, with the

exception of models 4 and 5 (i.e. the tree-search models with and without the

addition of switching during simulated trajectories). Since simulated behaviour

from these models could not be successfully discriminated, we did not use model

5 for any empirical analyses, and do not report it further. Instead, we report

the results from fitting the four models which could be successfully discriminated

through model confusion: offer-max, myopic, simple prospective, and stochastic

tree search. Methods and results of the model recovery procedure are included

in the appendices (Fig.A.1).
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Persistence Bias A major theme in this thesis is understanding over-commitment

to a goal. To quantify this for each individual, we used the metric of persistence

bias, defined as the tendency to persist with the current goal beyond the predictions

of the tree-search model, which approximates optimal choice behaviour. Since the

tree-search model also provided the best description of peoples’ behaviour compared

to the other models, it provided a useful metric for comparing differences across

participants. For each participant separately, we fit a logistic regression model

predicting their abandonment choices using the tree-search value of abandonment:

Vabandon = β0 + β1(Valt − Vgoal) (3.6)

We quantified the point at which each participant was indifferent to abandoning

the goal, compared to the tree-search model (i.e. the ‘shift’ on the sigmoid function

in Fig.3.7a). In other words, this is the point at which a participant is equally likely

to persist or abandon, quantified in terms of its deviation from approximately

optimal choice. Mathematically, this is equal to:

bias = −β0

β1
(3.7)

Where β0 and β1 refer to the intercept and slope respectively from the logistic

regression predicting participant abandonment choices (Eq. (3.6)). Note that

persistence biases are highly correlated with model-free metrics of persistence, such

as a participant’s total number of abandonment choices (see Fig.A.5), but provide

a more sensitive measure because they are not affected by differences in schedule

and indicate deviation from approximately optimal choice. Since the persistence

bias metric captures a deviation from optimal choice behaviour, higher persistence

biases are correlated with worse performance (as shown in Fig.A.6).

Since persistence biases violated tests of normality, we use the one-sample

Wilcoxon signed rank test to determine whether indifference points were different

to zero, showing a bias compared to the tree-search model. See Fig.A.2 showing
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persistence biases and sub-component parameters can be accurately recovered after

simulating behaviour within the empirical parameter range.

Test-retest reliability of persistence Persistence biases are an important

individual difference metric in this thesis. We investigated the test-retest relia-

bility of the persistence bias parameter across the two testing sessions (inside and

outside the scanner), by using the intraclass correlation (ICC). The ICC captures

the agreement across measurements while allowing for baseline differences across

sessions (Shrout and Fleiss 1979) We used the ICC(2k) score (absolute-agreement,

two-way random-effects model) as used in similar paradigms (Loosen et al. 2022)

where the conventional approach considers scores below 0.5 as ‘low’, between 0.5

and 0.75 as ‘moderate’, and above 0.75 as ‘good’ (Koo and Li 2016). For all future

analyses involving persistence biases, we used the values fit to the aggregated data

across both sessions unless explicitly indicated otherwise. Persistence biases across

the two sessions are shown in Fig.3.7b.

We also investigated the stability of the two sub-parameters from which persis-

tence bias is derived (intercept and slope) across the two behavioural testing ses-

sions (inside and outside the scanner). All three parameters show good test-retest

reliability, although note that persistence biases have both higher recoverability

from simulated data (see Fig.A.2) and higher test-retest reliability across empirical

sessions (see Fig.A.4) than either subcomponent parameters on their own.

Goal progress How does goal pursuit affect decision processes? To investigate

this, we performed a series of analyses to model how decision-making is affected

as people progress towards the goal. We define goal progress as the proportion

of the current goal completed (i.e. current net contents / net size). First, we

asked whether people became more biased in favour of persisting with the goal

(compared to what the tree-search model would do) as they progressed with the

goal. To quantify the additional impact of goal progress on peoples’ abandonment

choices, we added goal progress as an additional regressor alongside tree-search
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value. We used chi-squared tests to determine whether this addition improved our

basic mixed-effects model across participants.

Vabandon = β0 + β1(Valt − Vgoal) + β2GP (3.8)

Where GP refers to goal progress (i.e. proportion of goal completed), and Vgoal

and Valt refer to the tree-search value for the current goal and best alternative

goal respectively. Next, we asked whether people were not only more reluctant

to switch over the course of goal pursuit (influence of goal progress), but also less

sensitive to the value of switching (interaction between goal progress and value).

We also asked whether there was a significant interaction between goal progress

and tree-search value, indicating that people were less sensitive to the value of

switching over the course of goal pursuit:

Vabandon = β0 + β1(Valt − Vgoal) + β2GP + β3(Valt − Vgoal)GP (3.9)

On finding that people were less sensitive to value over time, we asked how this

related to our attentional hypothesis: specifically, that people will ignore alterna-

tive goal value more than current goal value as attention is increasingly oriented

towards the current goal. We split the aggregate value of abandonment into its two

components associated with the current and best alternative goals. We fit this final

model capturing asymmetry in value use at the level of individual participant. For

each participant, we fit a logistic regression model which included the interaction

between each source of value and goal progress:

Vabandon = β0 + β1Valt + β2Vgoal + β3GP + β4ValtGP + β5VgoalGP (3.10)

T -tests were used to determine whether there was a significant difference between

the disappearance of current-goal and alternative-goal value across goal pursuit,

using coefficients fit for each individual separately. We first tested whether the

interaction between value and goal progress differed from zero separately for each
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source of value, indicating a change in uses of both value components across goal

pursuit. We then tested for the difference in slopes between these coefficients

(difference in β weight for ValtGP interaction and for the sign-flipped VgoalGP

interaction). Note we use the sign-flipped coefficients for VgoalGP because the

value of the current goal and the value of the best alternative have opposing

impact on the likelihood of switching (see Fig.A.8 for an illustration of this analysis

in simulated behaviour from the tree-search model, showing this effect is not an

artefact of the task paradigm).

Reaction time analyses Earlier analyses had revealed that people slow down

in the face of high offers for alternative goals, and for low offers for the current goal.

We therefore asked whether peoples’ sensitivity to these factors also depended on

goal progress. Specifically, we predicted that reaction times would continue to be

sensitive to the current goal value but stop being sensitive to alternative goal value

over the course of goal progress.

To determine whether this was the case, we predicted trial-wise reaction times

using the following regression analysis:

rt = β0 + β1Vgoal + β2Valt + β3GP + β4ValtGP + β5VgoalGP + β6switch (3.11)

Where the final regressor switch captures whether the trial was a persist or aban-

donment choice. Earlier analyses revealed that people slow down more on aban-

donment trials, so this regressor was included as a control regressor.

Specifically, we were interested in whether the influence of alternative value

would disappear more than the influence of the current goal value over the course

of goal progress (difference in β weight for the ValtGP interaction and for the

sign-flipped VgoalGP interaction). As in the previous analysis, we compared the

sign-flipped coefficients for VgoalGP because the value of the current goal and the

value of the best alternative have opposing impacts on reaction times.
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Spatial attention task analyses

The spatial task results come from a separate behavioural testing session after

the fMRI session, where participants performed the same decision task with the

addition of an interleaved spatial attention task before making each decision (the

‘spatial variant’ described above). We used this task to measure the relative

distribution of attention between stimuli associated with the current goal, and

stimuli associated with alternative goals, across goal pursuit. We quantified spatial

error as the Euclidian distance between the location of the participant’s click and

the true location at which the stimulus appeared, in normalised screen units. We

quantified reaction times (RT) as the time in seconds (s) between when a stimulus

was probed (appearing in the top left corner of the screen), and when the participant

indicated their response.

We then categorised responses according to whether the probed stimulus was

the current goal good or one of the alternatives. We excluded the first trial of

every block from analyses, where no goods had yet been accumulated. Since the

distribution of mean reaction times and mean error did not violate assumptions of

normality, we used t-tests to determine whether mean error differed as a function

of the status of the stimulus (i.e. whether the stimulus was the current goal item

or an alternative goal item).

We then investigated whether the spatial error bias developed as a function of

goal pursuit. We fit two linear models for each participant predicting (a) current-

goal stimulus error and (b) alternative stimuli error using the number of trials

participants had been pursuing the goal, in each case modelling error using the

following linear regression:

error = β0 + β1trials (3.12)

Where trials corresponds to the trials invested in the current goal. Since the

beta weights did not violate assumptions of normality, we used t-tests to determine

whether the β1 coefficients across participants differed for zero (showing error is
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dependent on the number of trials invested) for either the current goal stimulus

or the alternative goal stimuli. We also tested for the difference between slopes,

using a t-test to determine whether trials invested affected error differently for the

current versus alternative goal stimuli.

Finally, we investigated whether goal biases in the spatial task were related to

persistence biases in the decision task. To capture an individual’s goal-oriented

attention bias, we took the difference between an individual’s mean error for the

current goal stimulus, and their error averaged across the two alternative stimuli.

We tested for a relationship between an individual’s goal-oriented attention bias,

and their persistence. Spearman’s correlation was used because as previously noted,

persistence biases violated assumptions of normality.

3.3 Results

3.3.1 Validation of task

Choices reflected sensitivity to the task structure (Fig.3.5a). People were more

likely to switch when the offers associated with alternative goods were high (impact

of best alternative offer on switching: β=0.53, t(29)=14.74, p < 0.001), and less

likely to switch when the offers for their current good were high (impact of current

goal offer on switching: β=-0.51, t(29)=-16.84, p < 0.001), or after having accumu-

lated a higher quantity of goods in their net (impact of net contents on switching:

β-0.76, t(29)=-27.67, p < 0.001). We found no effect of the worse alternative

on abandonment decisions (impact of second-best alternative on switching: β=-

0.009; t(29)=0.11, p=0.912).

Reaction times showed a similar profile (Fig.3.5b). We did not analyse reaction

times inside the scanner, because people were forced to wait for a jittered period

before responding. However, outside the scanner we found that people slowed

down substantially on abandonment trials (mean RT=2.59 seconds, std=0.62)

compared to trials where they persisted with the same goal (mean RT=1.52 seconds,

std=0.28). On top of this, people responded more slowly when offered valuable
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Figure 3.5: Simple choice analyses. (a) Results of logistic regression analysis performed
for each participant, predicting goal switching as a function of simple task parameters.
(b) Results of linear regression analysis performed for each participant, predicting
reaction times as a function of simple task parameters. For both b and c, error bars
show SEM across beta coefficients, dots show beta coefficients for individual participant,
stars indicate significance for two-sided t-tests of beta coefficients against zero.

alternatives (impact of best alternative offer on RT: β=0.14, t(29)=4.21, p < 0.001)

while responding faster when the goal offer was higher (impact of current goal offer

on RT: β=-0.33, t(29)=-12.85, p < 0.001). Just as for choices, we found no effect

of the worse alternative offer on reaction times (impact of second best alternative

offer on RT: β=0.015, t(29)=0.80, p=0.431, n.s.).

On average, people were able to fill 52 nets (std=3.6) within the 400 trials

total of the study (mean 7.67 trials to complete a net). Participants switched

to collecting a different good on 13.4% of trials excluding the first trial (mean 47

switches per participant), with 53.7% of these switches occurring within the second

and third trials of the block. There was wide variety in how much people switched,

ranging from 24 to 63 switches (std=9.72) total during the study.
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3.3.2 Behaviour is best described by a tree-search model

After confirming people made sensible responses, we turned to investigating the

behavioural strategies people were using to make these choices. Participants’

behaviour was best described by the most complex model we tested (“tree-search

model”; see Fig.3.6 for comparison of model fits; see Fig.3.4 for graphic of models).

This model samples possible future trajectories for the option offers using the true

generative procedure, and selects the option which is predicted to fill the net fastest

when averaging across the sampled trajectories, providing an approximation of the

optimal decision (monte-carlo sampling). Note that if trials are divided into those

where participants chose to abandon versus chose to persist, tree-search model

captures choice behaviour best for both trial types (Fig.A.3). This suggests that be-

yond capturing the total number of abandonment choices better than other models

(as shown in Fig.3.4), tree-search model also captures the timing of abandonment

choices better. That is, just looking at trials where participants choose to persist,

tree-search model also captures choice data best.

3.3.3 People show goal commitment biases

While general choice strategy was best described by the tree-search model, which

approximated optimal choice behaviour, people tended to over-persist with their

current goal beyond the predictions of the model (Fig.3.7a; persistence biases

were significantly greater than zero: t(29)=11.23, p<0.001). Persistence biases

were quantified as peoples’ deviation from the tree-search model, in terms of their

indifference point to abandoning the goal (see green dots on Fig.3.7a). While

by definition the tree-search model is indifferent to abandonment at a value of

zero, people tended to require a higher objective value of abandonment in order

to actually abandon their current goal. Since the tree-search model provides an

approximation of the optimal choice, people with higher persistence biases tended

to perform worse (Fig.A.6; pearson’s correlation between persistence and average

goal completion time: r = 0.61, p < 0.001). This metric of persistence bias
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Figure 3.6: Model fits. (a) Cross-validation accuracy of each model. A leave-one-out
procedure was used. For each participant, we fit each of the mixed-effects models to the
choices of all other participants (n − 1). Predictive accuracy for the left-out participant
choices was computed using the fitted coefficients. Mean cross-validated performance
across participants is plotted, with error bars depicting SEM. (b) Frequencies of the best
fitting model across the population. For each participant, the best fitting model was
assessed using the cross-validated accuracies. The tree-search model was the best fit to
choices for 27 out of 30 participants.

had excellent test-retest reliability within participants across sessions (see Fig.3.7b,

intraclass correlation coefficient = 0.76, p = 0.002, 95% confidence interval (CI)

= (0.25, 1.0)).

3.3.4 People lose sensitivity to alternative goals over the
course of goal pursuit

Our task design allows us to characterise commitment biases further, by asking

what drives peoples’ commitment to goals and what causes people to remain willing

to abandon their goal. Specifically, we predicted that changes in alternative goals

might influence behaviour less than changes in the chosen goal. How does progress

towards a goal affect peoples’ sensitivity to the value of alternative goals? We

looked at how both decisions and reaction times might reflect diminished processing

of alternative goals.
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Figure 3.7: Persistence bias. (a) Probability of goal abandonment as a function of
the tree-search value of abandonment. Although the tree-search model captured choices
best, people showed an additional bias towards persisting. Bold line shows fits across all
participants, transparent lines show individual participants (n=30). Green dots indicate
indifference to abandonment, used as the index of individual persistence biases. (b)
Test-retest reliability of persistence biases across sessions. Session 1 took place inside
the fMRI scanner, while session 2 took place outside the fMRI scanner (alongside the
interleaved spatial working memory task).

In general, as people progressed towards the goal, they became both more

reluctant to switch, and less sensitive to the value of abandonment (Fig.3.8a; aban-

donment value is defined as the projected value difference between staying with the

current goal and switching to the best alternative goal; main effect of goal progress

on top of tree-search abandonment value: X2(1, N = 30) = 5.27, p = 0.022;

interaction between abandonment value and proportion of net completed, on top

of both main effects: X2(1, N = 30) = 42.43, p < 0.001). We then asked whether

this loss of sensitivity equally affected value associated with the current goal versus

value associated with alternative goals.

Pressure to abandon the current goal comes from two directions: an alternative

good might become more attractive, pulling the agent towards the better option

(‘temptation’) or the value of the goal good might collapse, pushing the agent away

from the current goal (“frustration”; see Fig.3.1b for example). A rational agent

should weigh these two forms of pressure equally when evaluating the options,

since value is simply the estimated time in which the target can be completed

with each option (i.e. the tree-search already factors in accumulated value; see
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Fig.A.8c for analyses on model simulations). We predicted that value associated

with alternative goals would impact behaviour less than value associated with the

current goal over the course of goal progress.

We found that people indeed showed an asymmetry in their use of these value

sources which developed during goal pursuit. As an individual neared goal comple-

tion, abandonment was driven less by offers of highly attractive alternatives than

by the current goal collapsing, compared to the normative model (Fig.3.8c). To test

this, we predicted abandonment choices in a regression model using the interaction

between goal progress and each source of value (alongside the main effects). Both

sources of value impact behaviour less over the course of goal progress (interaction

between alternative value and goal progress: t(29) = −7.97, p < 0.001; interaction

between current goal value and goal progress: t(29) = 7.08, p < 0.001). However,

this loss of influence on behaviour affected alternative goal value more than current

goal value (difference between slopes: t(29) = −3.39, p = 0.002; visualised in

Fig.3.8c by binning the data). In other words, over the course of goal pursuit,

the impact of temptation from alternatives fades more rapidly than the impact

of frustration with the current goal.

We then looked at whether reaction times also show this marker of reduced

sensitivity to alternative goals during goal pursuit. In general, we found that

people slow down both when offered a valuable alternative, and when the current

goal drops in value. We asked whether these trends were sustained across goal

pursuit. We found that reaction times became less sensitive to good alternatives

over time, but became more sensitive to the value of the current goal (Fig.3.8b).

Taken together, both reaction time and choice data suggest people lose sensitivity to

valuable alternative goals over the course of goal pursuit, whilst retaining sensitivity

to their progress with the current goal.
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Figure 3.8: Development of persistence biases across goal pursuit. (a) Across individu-
als, persistence biases increased with goal progress (i.e. proportion of the net completed).
Successive purple lines show probability of abandonment as a function of tree-search
abandonment, binned by goal quartile (shown for illustration). (b) Impact of value
on choice reaction times. Over the course of goal pursuit, reaction times maintained
sensitivity to the value of the current goal, but lost sensitivity to the value of the best
alternative goal. Orange and blue lines depict the influence of best alternative goal tree-
search value and (sign-flipped) current goal tree-search value on reaction times across
goal pursuit. Error bars depict SEM of beta weights. (c) Impact of value on choices
to abandon the current goal. Over the course of goal pursuit, abandonment was driven
less by temptation (high alternative goal offers) compared to frustration (collapse in
the current goal value). Orange and blue lines depict the influence of best alternative
goal tree-search value and (sign-flipped) current goal tree-search value on abandonment
choices across goal pursuit. Error bars depict SEM of beta weights.

3.3.5 Goal commitment is linked to higher goal-directed
attention

We predicted that attention and decision-making biases would be related during

goal-pursuit. To measure attention biases, we investigated how attention was

distributed between stimuli associated with the current and alternative goals in a

decision-free spatial attention task interleaved between decisions. Since the spatial

attention task was not possible to perform using a button box inside the scanner, we
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investigated these attention biases in a separate testing session conducted outside

the scanner. In the post-scan session, trials of the spatial attention task were

interleaved with new trials of the main decision task.

In the spatial attention task, participants were asked to report the location of

briefly-flashed fish, octopus and crab symbols, using a mouse click. Indeed, partic-

ipants were both more accurate and faster at reporting the location of the current

goal stimulus compared to the alternative goal stimuli (Fig.3.9a,b; difference in

accuracy for current goal vs alternative: t(29) = 2.25, p = 0.032; difference in RT

for current goal vs. alternative: t(29) = 3.30, p = 0.003). This accuracy difference

was primarily driven by progressive memory enhancement for the goal stimulus:

spatial accuracy for the current goal stimulus increased with the number of trials

participants had been pursuing the current goal (Fig.3.9c; effect of pursuit time

on goal item accuracy: t(29) = −2.65, p = 0.013; there was no significant effect of

pursuit time on accuracy for alternative stimuli: t(29) = −0.033, p = 0.974, n.s). In

a direct comparison, there was a significant difference between slopes for the effect of

goal pursuit on selected and alternative goal items (t(29) = −2.37, p = 0.024). This

effect occurred despite the fact that the task occurred outside the decision period,

and that participants knew their performance on this interleaved task would not

affect subsequent offers, suggesting a true attentional bias towards the chosen goal,

that increases with goal commitment.

This metric of attentional goal capture directly predicted individual differences

in persistence biases: people who showed more attentional capture by the cur-

rent goal demonstrated higher persistence biases (Fig.3.10; correlation between

spatial bias and persistence bias. Note that this relationship holds even when

attention-biases and decision-biases originate from separate behavioural testing

sessions (using persistence biases fit to data from scanner-only session: Spearman’s

r = 0.50, p = 0.005; Using persistence biases from data aggregated across both scan-

ner and post-scan sessions: Spearman’s r = 0.53, p = 0.003). This demonstrates

that an individual’s tendency to over-persist with the current goal is related to

their allocation of selective attention towards the current goal.
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Figure 3.9: Performance in the attention task. (a) In the interleaved spatial task,
reaction times were lower for the current goal stimulus (blue) compared to alternative
goal stimuli (orange). Note the order in which stimuli are probed is randomised. (b)
Error was lower for the current goal stimulus compared to the alternative goal stimuli.
Error is measured as the Euclidian distance on the screen between the true location
of the stimulus and the reported location. SEM of RT is depicted, stars indicate two-
sided paired t-test. (b) As participants invested more trials in a particular goal, spatial
error decreased for the goal stimulus (blue), but not for alternative goal stimuli (orange).
Mean error is plotted against trials pursuing the goal; dots show binned means and
SEM, with added regression lines (shaded region indicates SEM of regression lines across
participants).

Figure 3.10: Individuals showing greater goal-oriented attention (in the interleaved
attention task) had higher persistence biases (in the choice task). Attention bias
corresponds to the difference in spatial error for the current goal compared to alternative
goals. Persistence biases and attention biases come from separate testing session data
(inside and outside the scanner respectively).
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3.4 Discussion

Many rewards are only obtained after a period of persistent effort. Therefore a key

challenge for agents is to maintain a balance between commitment with the current

goal and flexibility if it ceases to be worthwhile. In this chapter, we developed a

pair of complementary tasks to measure how attentional and decision-making biases

develop together during incremental goal pursuit. We present evidence that the

shift towards goal commitment relates to goal-oriented selective attention.

In the decision-making task, commitment to a goal is required in order to

realise rewards, but to perform well at the task participants must also remain

sensitive to changes in the value of the current and alternative goals. It is well

known that people tend to over-persist with chosen goals (the ‘sunk cost’ fallacy)

(Arkes and Blumer 1985). Consistent with this literature, participants in our

task tended to persist with goals longer than was optimal. However rather than

consider this behaviour as a biased weighting of decision variables, our evidence

supports the theory that it emerges as a consequence of sustained alterations in

attention favouring the current goal. Mechanisms of selective attention prioritise

processing of the current goal over alternative goals, resulting in reduced sensitivity

to attractive alternatives (‘temptation’). This reduced sensitivity manifests in two

behavioural metrics: (i) over time, reaction times stop responding to the value of

alternative goals (while continuing to respond to the value of the current goal), and

(ii) decisions to abandon the goal are driven less by temptation from alternative

goals compared to frustration with the current goal.

We further probed this attentional account by interleaving the decision-task

with an unrelated and decision-free spatial working memory task. We found that

participants were better able to recall the location of stimuli associated with the

current goal, and this tendency increased as they pursued the goal for longer.

Furthermore, there were stable individual differences in persistence with a goal,

which were predicted by individuals’ sustained goal-directed attention outside the

decision period. Individuals who were more biased to persist with a goal showed
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higher goal-oriented selective attention, even when these metrics were captured in

separate testing sessions and despite the fact that performance in the spatial task

did not influence the goal pursuit task.

People who over-persist show greater goal-directed attention. What is the

direction of this relationship? On the one hand, attention could affect persistence:

when attentional biases prioritize the current goal option, the likelihood of selecting

the goal is increased. This is consistent with studies showing that exogenously

guiding attention to stimuli increases the likelihood of their selection (Armel et al.

2008; Shimojo et al. 2003; Schonberg et al. 2014; Salomon et al. 2018). It is also

consistent with our behavioural modelling showing that people lose sensitivity to

the value of alternative goals, suggesting alternatives are not entering the decision.

Persistence could also affect attention: higher evaluation of the current goal

relative to alternatives could lead to greater attentional capture by the goal option

(even though value is irrelevant, such as during the interleaved spatial attention

task). Previous studies have shown that historic value modulates visual attention,

even in scenarios when value is not currently relevant or even detrimental to the

task at hand (Anderson et al. 2011; Anderson and Yantis 2013; MacLean and

Giesbrecht 2014; Pearson et al. 2016; Le Pelley et al. 2015; Gluth et al. 2018).

These explanations are not mutually exclusive and their interaction could es-

calate goal persistence. However importantly, the loss of sensitivity to changes in

alternative goals (demonstrated both through reaction times and decisions) cannot

be explained purely through higher evaluation of the current goal (i.e. an additive

bias). Rather, it suggests that alternative value is contributing less to decision

processes later in goal pursuit, consistent with our attentional account.

3.5 Contributions

This chapter includes work from an upcoming publication in Nature Human Be-

haviour: Holton, E., Grohn, J., Ward, H., Manohar, S.G., O’Reilly, J, & Kolling,

N. (2024). Goal commitment is supported by vmPFC through selective attention.
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The conceptualisation, experimental design and analyses in this chapter were

supervised by Nils Kolling, Jill O’Reilly and Jan Grohn.
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4
Neural mechanisms of goal pursuit

This chapter investigates how goal pursuit is supported in neural activity, using

fMRI. We find a network of medial prefrontal regions centred on vmPFC which

continue to track progress with the current goal between decisions. We find that

individual differences in behaviour discovered in chapter 3 (both biases to persist

with a goal and goal-oriented attention) are predicted by baseline activity in vmPFC.

These findings offer a mechanism for how goal pursuit is supported in neural

activity, through sustained representations of the current goal in vmPFC which

bias attention and subsequent choice. We also examine how value-related activity

at the time of decision is modulated by goal pursuit. Mirroring our behavioural

finding that people lose sensitivity to alternative value as they near the goal state,

ventral striatum also shows a reduction in alternative goal value signals (but not

current goal value signals) over the course of goal pursuit.

4.1 Introduction

4.1.1 Research aims

This chapter examines the neural mechanisms supporting goal pursuit. Our anal-

yses are motivated by our main behavioural findings in chapter 3. Previously,
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we found an asymmetry in how value affected decisions that unfolded over the

course of goal pursuit. Specifically, we found a relative loss in sensitivity to value

relating to alternative goals (‘temptation’) compared to value relating to the current

goal. Our first question was to ask how this behavioural asymmetry related to

neural value signals.

Second, we found that goal pursuit had a sustained impact on behaviour, even

outside the decision context. Specifically, we found goal-oriented biases in attention

in an interleaved spatial attention task which was irrelevant for goal pursuit. We

reasoned that neural regions involved in these pervasive changes in processing

might similarly show goal-related activity persisting outside the decision period. To

investigate this, we looked at how a critical contextual variable – namely progress

with the current goal – was carried in neural activity between decisions.

Finally, behavioural analyses revealed an intriguing individual difference metric.

Peoples’ biases towards persisting with the current goal showed stability across

testing sessions, and also correlated with their goal-directed attention in the inter-

leaved spatial attention task. How do these individual differences in capture by

the current goal relate to neural signals?

4.1.2 Value signals during goal pursuit

Our study presents participants with the choice between persisting with a current

goal versus abandoning progress for alternative goals. A helpful framework for

understanding this form of decision comes from the foraging literature, which

presents natural decisions as choices between a default option and a non-default

option (Stephens and Krebs 1986; Kolling et al. 2012; Hayden et al. 2011). One

previous study defined the notion of a default option as ‘the option that would be

selected in the absence of further information processing about its value relative

to alternatives’ (Lopez-Persem et al. 2016). In our study, continued pursuit of the

goal would be the natural default under this definition.

Previous studies have implicated dACC in representing the value of switching to

the non-default option (Kolling et al. 2012; Blanchard and Hayden 2014; Fouragnan
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et al. 2019; Kaiser et al. 2021; Hayden et al. 2011; Tervo et al. 2021; Trudel et al.

2021). For example, dACC tracks the value of leaving the current patch, and is

involved in decisions to switch away in foraging tasks (Kolling et al. 2012; Hayden

et al. 2011). We therefore predicted that dACC activity would correlate with the

value of pursuing alternative goals in our task.

In contrast, activity in vmPFC often correlates with the value of the default

option (Lopez-Persem et al. 2016). In general, many studies have found vmPFC

flexibly represents choice values according to the current goal when the goal is

determined by the experimenter (Grueschow et al. 2015; Rudorf and Hare 2014;

Castegnetti et al. 2021; Trudel et al. 2021; Park et al. 2021). We therefore

predicted that in our study, vmPFC would correlate with the value of persisting

with the current goal. Finally the ventral striatum is also a centre of value-guided

choice (Jocham et al. 2011), which is known to be sensitive to goal proximity

(Howe et al. 2013). We predicted that activity in ventral striatum would relate to

progress with the current goal, and show similar value-related activity to vmPFC

(Piray et al. 2016).

We first confirmed that these brain networks for value-guided decisions corre-

lated with the key elements of our task, as predicted by previous studies. We

then turned to analyses inspired by our behavioural finding that people were less

sensitive to alternative value as they progressed towards the goal. Specifically, we

asked how neural value signals were modulated over the course of goal pursuit.

We found that ventral striatum showed the same marker as behaviour: namely a

reduction in sensitivity to alternative value over the course of goal pursuit, alongside

sustained sensitivity to the value of the current goal.

4.1.3 Sustaining the goal

In the second set of analyses, we examined the sustained impact of goal pursuit

outside of the decision. Medial PFC has been implicated in carrying information

about the current context even when it is not visually observable (Wilson et al.

2014), and even between decisions (Bari et al. 2019). Therefore, we predicted
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that medial prefrontal areas would carry information relevant for goal pursuit in

the inter-trial period. We focussed on progress with the current goal as a critical

contextual variable carried over across trials. We found this contextual variable

was held in a subset of medial prefrontal areas between decisions, with the peak

of activity in vmPFC.

Finally, we investigated how individual differences in persistence and attention

related to our neural findings. VmPFC activity has long been implicated in correlat-

ing with the idiosyncratic values that people place on different attributes of reward

(Levy and Glimcher 2012), including individual differences in willingness to pay for

items (Plassmann et al. 2007), aversion to loss (Tom et al. 2007), or delay discount-

ing (Kable and Glimcher 2007). What are the mechanisms through which vmPFC

activity could influence the decision process according to these preferences? A line

of research has identified a key role for baseline (pre-stimulus) vmPFC activity

in carrying contextual information which biases subsequent choices (Lopez-Persem

et al. 2016; Vinckier et al. 2018; Abitbol et al. 2015). For example, one study linked

peoples’ prior expectations about their subjective preferences within categories of

food or music to baseline activity in vmPFC (Lopez-Persem et al. 2016).

Given that we had already found sustained goal-related activity in vmPFC

between decisions, pre-stimulus activity in this area was a prime candidate for

investigating individual differences in goal pursuit. We found that differences in

persistence with a goal, as well as goal-oriented attention, both correlated with

goal-related baseline activity in vmPFC.

4.2 Methods

4.2.1 Study procedure

Thirty participants took part in the fMRI study. For a full description of the partic-

ipants, task and training, see Methods from chapter 3. Note that participants did

not perform the spatial attention task inside the scanner due to the impracticality

of using a button box to report spatial locations. However, we kept the structure of
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Figure 4.1: Task timeline in the scanner. To keep the task visually consistent with the
spatial session outside the scanner, participants passively viewed the three sea creatures
flash on screen during the inter-trial interval, but were not required to report the location
of the creatures. To dissociate activity related to the decision from activity related to
response indication, we included a two second buffer zone once the offers were presented,
before participants could make their response. In the main fMRI analyses, activity was
time-locked to the onset of the decision period, shown here as (view offers). In the
additional ITI analysis, activity was time-locked to (ITI 1).

the task similar by including the flash of the three creatures on the screen, although

participants were not probed on the locations (Fig.4.1). The original objective for

this inter-trial spatial presentation was to measure attentional capture through eye

tracking. However, regrettably due to malfunctioning eye tracking equipment, we

were unable to attain this data. Inside the scanner, participants performed 300

trials of the decision task. On each trial, they selected the creature of choice using

a button box where the first three buttons corresponded to the top, middle and

bottom creatures on the screen.

4.2.2 Data acquisition

The fMRI data were collected at the Oxford Centre for Human Brain Activity using

a 3T Siemens scanner with a multiband accelerated echoplanar imaging sequence

with the following parameters: voxel resolution 2.4 x 2.4 x 2.4 mm3, repetition

time=1230ms, echo time=30ms, flip angle=60◦, field of view=240mm, multiband

acceleration factor=3, PAT factor=2, encoding direction=PA. A tilt angle of 30◦

was used to minimize signal drop out in the orbitofrontal cortex (Deichmann et al.

2003). Data was collected in two consecutive runs of approximately 25 minutes,

where participants stayed in the scanner between runs. Fieldmaps were acquired
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using a dual echo 2D gradient echo sequence (TE1 = 4.92ms, TE2 = 7.38ms and

TR = 590ms, image resolution of 2.4mm). T1-weighted structural images were

also acquired at a voxel size of 1.0 x 1.0 x 1.0 mm3, TE = 3.96ms, TR = 1900ms.

4.2.3 Pre-processing and analysis structure

Data were pre-processed using FMRIB’s Software Library (FSL), using the FEAT

software tool (Woolrich et al. 2001) Functional data were motion corrected using

rigid body registration to the central volume (Jenkinson and Smith 2001; Jenkin-

son et al. 2002). Gaussian spatial smoothing was applied with a full-width half-

maximum of 5mm, and high pass temporal filtering was applied with a cut-off

of 60s. Cardiac and respiratory data were processed using FSL’s Physiological

Noise Modelling (PNM) tool to model the effects of physiological noise in the MRI

data (Brooks et al. 2008). Since participants completed the MRI session in two

runs, parameter estimates were first estimated at the level of run (first level), then

combined within individuals as Fixed Effects (second level), and finally combined

across subjects using FMRIB’s Local Analysis of Mixed Effects (FLAME1+2; third

level (Woolrich et al. 2004)). Multiple comparisons were corrected for using a Z

statistic threshold of 3.1, and a cluster probability threshold of p = 0.05. A double

gamma HRF function was used.

4.2.4 Whole-brain analyses

Two whole-brain analyses of the data using general linear models (GLM) were

conducted. An initial model free analysis was conducted prior to these analyses as

a sanity check, and is included in the appendices (Fig.B.2). The results reported

in this chapter are based on two analyses:

1. Decision time analysis. Our main analysis used value defined by the

tree-search model, which was the best predictor of behaviour. Regressors

included the tree-search value of the current goal, the best alternative, and

worst alternative, goal progress, goal size, and whether the participant chose
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to persist or abandon (1/0). Goal progress is correlated with tree-search

value, and our behavioural analyses shows it is an additional predictor of

abandonment beyond tree-search value (shown in Fig. 3.8a). For this reason,

we chose to separate the goal progress component from value in the fMRI

analysis. To do this, we residualised all forms of value using goal progress,

and used goal progress as an independent regressor on top, enabling us

to investigate signals of goal progress separately from information about

option offers. In addition, since the tree-search value of an option is an

approximation of its time to completion, it is highly dependent on the size

of the net across different blocks. To account for this, we also residualised

tree-search value to net size, and included net size as a separate regressor. In

other words, for each value component (current goal, best alternative, worst

alternative), we removed the components related to goal progress and goal

size, and added these components as unique regressors. The final correlations

between regressors are shown in Fig. 4.2a.

2. Inter-trial analysis. Behavioural analyses in chapter 3 revealed pervasive

effects of goal pursuit on attention, even outside of the decision period.

We therefore hypothesised that neural areas important for these sustained

goal-directed biases might carry information related to the goal between

decisions. The inter-trial analysis included all the same regressors as analysis

1. However, in addition to including regressors time-locked to the decision, we

also included regressors from the previous trial, time-locked to the previous

inter-trial interval (’ITI 1’ in Fig. 4.1).

All regressors were z-scored at the level of individual runs before fitting the GLM.

In all analyses, reaction times were included as additional control regressors. In

addition to the parametric regressors, five types of events were included in the

final GLM as main effects: onset of the decision period, onset of the block, spatial

presentation of the three stimuli (substituting the spatial task), the update of the

net, and the end of the block. Finally, the following confound regressors were
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included in all analyses: Six motion regressors produced during realignment, the

physiological EVs (processed by PNM) and motion outlier events. Motion outliers

were detected using FEAT’s fsl motion outliers tool. Metric values for detecting

motion outliers were calculated for each time-point using the RMS intensity differ-

ence between each volume and the reference volume, and outliers were identified

as volumes for which the metric value exceeded the 75th percentile + 1.5 times the

inter-quartile range. We did not analyse the first trial of each block in parametric

analyses of value, as the current goal was not yet defined.

4.2.5 Region of interest analyses

Our region of interest analyses aimed to address two questions based on the findings

of our behavioural modelling and whole brain analyses. First, we asked how

representations of value were modulated by goal pursuit. In other words, did

neural areas represent value in a stable manner, or did these change dynamically

as people progressed through the goal? Second, we asked how individual variability

in persistence was related to our hypotheses about pre-stimulus vmPFC activity.

The methodology for these two analyses is described below.

ROI selection and extraction procedure

We selected regions-of-interest in three key value-sensitive areas for further analysis.

VmPFC, ventral striatum, and dACC all showed strong value-related activity

at decision time in our whole-brain analysis. This is consistent with previous

literature showing dACC is involved in value-guided abandonment (Fouragnan

et al. 2019; Kolling et al. 2012; Tervo et al. 2021), and ventral striatum is a

centre of value-guided choice (Jocham et al. 2011), known to be sensitive to goal

proximity (Howe et al. 2013), and with meaningful projections to vmPFC (Piray

et al. 2016). Given the relevance of these areas for decision-making during goal

pursuit, we created regions of interest at the peaks of activity in these areas from

our whole-brain analysis, to investigate how the observed activity changed over

the course of goal pursuit.
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We selected activity peaks for the value of persisting (current goal value–

best alternative value; peaks in vmPFC and ventral striatum), and the value of

abandoning (best alternative value–current goal value; dACC), following cluster

correction. Illustration of the ROIs can be seen in Fig.4.3a,b,c, and all activity

peaks are listed in the supplementary materials (Fig.B.4). Since our whole-brain

analysis did not reveal any activation for the value of the third alternative in these

areas, we did not include the third alternative in subsequent analyses. Regions

of interest consisted of spheres with a 3 voxel radius (7.2mm3). In time-course

analyses, activity in these spheres was up-sampled by a factor of 10, and cut into

epochs which were aligned to the onset of the decision phase.

Activity in these value-related ROIs was then used to investigate the modulation

of value signals over the course of goal progress. Any time courses displaying

non-orthogonal contrasts are for illustration purposes only and no statistical tests

were performed.

Value modulation analyses

We found an asymmetry in the use of value in behaviour, where the influence of

value related to alternative goals disappeared more than the influence of value

related to the current goal, over the course of goal pursuit. Therefore, we asked

whether neural representations of value in our ROIs also changed over the course

of goal pursuit.

Following the analysis for behaviour, we predicted activity in each ROI with

the interaction between goal progress and each source of value (tree-search value

of best alternative and tree-search value of current goal). Following our analyses of

reaction times, we also included a binary regressor controlling for whether the choice

was to switch or abandon. This was important because abandonment trials have

a large impact on neural activity beyond value, and there are substantially fewer

abandonment trials later during goal pursuit. In addition, we used a confound

regressor controlling for response times:
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BOLD = β0 + β1Vgoal + β2Valt + β3GP + β4ValtGP + β5VgoalGP + β6switch + β7log(RT )

(4.1)

Where BOLD refers to the neural BOLD activity within each ROI. All regressors

were normalised before fitting the GLM. Activity in the ROIs was up-sampled by

a factor of 10, and cut into epochs which were aligned to the onset of the decision

phase. The model was subsequently fit to each time point within the epoched

time-course data. We then multiplied the time-course of fitted beta coefficients

by the double gamma HRF function, and summed the products to produce a

single coefficient for each regressor (per participant). We selected the coefficients

which correspond to the interaction between goal progress and each value source

(current goal and alternative goal) at decision-time. We then tested whether the

interaction coefficients were significant using one-sampled tests against 0 (one-sided

to match our hypotheses for decreasing sensitivity to value over goal progress). Non-

parametric methods (Wilcoxon signed-rank test) were used because the distribution

of beta weights violated the assumption of normality. Note that although we report

one-sided tests due to our behavioural prediction of finding a decreasing impact of

value over goal pursuit, our findings remain the same with two-sided tests.

Baseline activity analysis

Our previous whole-brain analysis found that activity correlating with goal progress

was present in a subset of medial frontal areas during the inter-trial interval,

with the peak of this activity located in vmPFC. Previous research has shown

that baseline tracking of long-term task variables in vmPFC can influence choices

(Abitbol et al. 2015; Lopez-Persem et al. 2016; Vinckier et al. 2018; Lopez-Persem

et al. 2020). Our goal in this analysis was not to replicate previous findings showing

that pre-stimulus vmPFC biases choices on a trial-wise level. Instead, we focussed

on the specific question of whether this activity had relevance for the individual

differences observed in behaviour.
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Following previous paradigms, we define ‘baseline activity’ as the activity level

measured in our vmPFC ROI at the time of stimulus onset, before the new offers

or decision process itself influence the dynamics. Rather than using the hemody-

namic response function which is inappropriate for analysing pre-stimulus activity

(Abitbol et al. 2015), we built a GLM composed of a finite impulse response

function (FIR) from four TR (4.92s) prior to stimulus onset, to six TR (7.38s)

after stimulus onset. We then extracted regression estimates for the impact of

goal progress at stimulus onset. This produced coefficients at the participant

level (i.e. for each participant, the extent to which vmPFC activity at stimulus

onset tracked goal progress).

Then we specifically tested for a relationship between these individual base-

line coefficients and our behavioural measures (persistence bias and goal-directed

attention). Note that the metric of attention is taken from a separate session,

outside the scanner.

To test the specificity of our vmPFC baseline effect we did two additional

analyses. First, we tested whether baseline activity tracking goal progress in the

other two ROIs (ventral striatum and ACC) significantly predicted persistence.

Second, we investigated whether goal-progress activity time-locked to the decision

itself predicted individual behavioural measures. To quantify the decision-related

activity, we used the HRF function. We multiplied the fitted beta coefficients for

goal progress at each time-point by the double gamma HRF function, and summed

the products to produce a coefficient for each participant (same procedure described

in Value modulation analyses above).

Mediation analysis

In the previous chapter, we found a significant relationship between inter-trial goal-

oriented attention and persistence bias. In this chapter, we found a relationship

between each of these behavioural metrics and baseline vmPFC activity in the

fMRI scanner. To further investigate these relationships, we performed a mediation
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analysis. We asked the following question (based on temporal order): could atten-

tional capture by the goal (measured before the decision) affect persistence (the

choice) through baseline vmPFC activity at choice onset? In assessing mediation,

we performed the following steps (Baron and Kenny 1986):

1. Impact of attention on persistence.

persistence = β0 + β1attention (4.2)

Where β1 must be significant.

2. Impact of attention on baseline vmPFC

vmPFCbaseline = β2 + β3attention (4.3)

Where β3 must be significant.

3. Mediation of relationship between attention and persistence by baseline vmPFC.

persistence = β4 + β5attention + β6vmPFCbaseline (4.4)

Where β6 must be significant, and β5 must be smaller in value than β1 above

(or insignificant).

Here, attention refers to an individual’s goal-oriented attention bias defined as the

mean difference in accuracy for reporting the location of the current goal stimulus

compared to reporting the location of alternative goal stimuli (see attention task

analyses from chapter 3). This metric comes from the spatial attention task

performed between decisions in the post-scan session. Persistence refers to an

individual’s bias towards persisting with the goal (from the tree-search model; see

persistence bias from chapter 3). Finally, the metric vmPFCbaseline was the mean

baseline effect of goal progress on vmPFC activity, as described in the section above.
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4.3 Results

4.3.1 Neural activity related to goal pursuit at the decision

We investigated neural activity at the time of the decision in a whole-brain analysis

(regressors time-locked to the onset of the offers). These analyses revealed a broad

network of areas sensitive to goal pursuit. A version of this analysis with model-

free regressors can be found in the appendices (Fig.B.2).

We found value-related activity consistent with previous studies engaging brain

networks in choices between staying with a default versus switching to an alterna-

tive (Fig.4.2). Medial frontal pole, vmPFC and striatum increased their activity

as the value of persisting with the goal increased (value of current goal–value of

best alternative). These areas were also more active on persist trials (compared to

abandonment trials). In contrast, dACC, presupplementary motor area (preSMA),

bilateral dorsolateral prefrontal cortex (dlPFC), and bilateral insular, all showed

the opposite profile: activity increased as the value of abandonment increased

(value of best alternative–value of current goal), and activity was higher on trials

where the participant chose to abandon the current goal. We included response

times as an additional control regressor, previously used as a proxy for choice

confidence (Shenhav et al. 2014). We found that dACC activity was also higher

when participants were slower to respond, but we found no relationship between

response times and vmPFC activity (See appendices; Fig.B.2).

Time-course illustrations of value-related activity in our three ROIs can be seen

in (Fig.4.3). For interest, we have included in the appendices illustrations of the

neural value profiles on trials where the participant chose to abandon the current

goal versus trials where they chose to persist with the same goal (Fig.B.5).

4.3.2 Ventral striatum activity reflects reduced sensitivity
to the value of alternative goals

As attention to the current and alternative goals varies with goal pursuit, we should

expect to see changes in neural representations of these goals. In particular, in
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Figure 4.2: Decision-related activity. (a) Matrix showing correlations between re-
gressors in the main decision-time analysis. (b) Results from the whole-brain analysis
showing cluster-corrected peaks for activity higher on trials where the participant chose
to persist with the same goal (blue) versus trials where the participant chose to abandon
for the best alternative option (red). (c) Activity correlating with parametric value
regressors. Colours show cluster-corrected peaks for the contrasts capturing the value
of persistence (blue: contrast of current goal value over best alternative value) and the
value of abandoning (orange: contrast of best alternative value over current goal value).

behaviour we observed an intriguing asymmetry, namely that as goal commitment

increased, sensitivity to alternative goal value (‘temptation’) was reduced more

than sensitivity to the current goal value (‘frustration’). We therefore asked how

value signals relating to the current and alternative goals change as a function

of goal pursuit.

Parallel with our behavioural results, we found an asymmetry between how

goal pursuit affected signals relating to alternative and current goal value in the

ventral striatum. Specifically, representations of alternative value disappeared in

the ventral striatum over the course of goal pursuit, but activity continued to co-

vary with the current goal value (Fig.4.4, left; interaction between best alternative

value and goal progress: Wilcoxon signed rank, Z = 2.37, p = 0.009, n = 30,

r = 0.43, one-sided; interaction between current goal value and goal progress:
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Figure 4.3: Time-courses of neural value activity. (a,b,c) We extracted regions of
interest based on the peaks of value-related activity in our fMRI study. These consisted
of the peaks of activity for the contrast of goal value over alternative value in the case
of ventral striatum [8,8,-10], and vmPFC [-2,48,-8], and the largest sub-peak of activity
in the dACC for the contrast of alternative value over goal value regressors [8,28,30].
(d,e,f) Time course analyses depicting the t-statistics for the regressors of goal progress
(purple), current goal value (blue), and best alternative value (orange) in the three regions
of interest (for illustration). Time 0 seconds corresponds to the onset of the offer stimuli.
Mean beta weights are plotted, where shaded error show SEM across participants (n =
30).

Wilcoxon signed-rank, Z = −1.03, p = 0.152). This mirrored the behavioural

finding that people became relatively less sensitive to temptation by alternative

goods, whilst maintaining sensitivity to the value of the chosen goal, over the course

of goal pursuit. In contrast, there was no significant change in the representation

of alternative value over goal pursuit in either vmPFC (Z = 1.19, p = 0.116) or

ACC (Z = 0.41, p = 0.660).

4.3.3 VmPFC activity tracking goal progress persists be-
tween decisions

Since behavioural analyses in chapter 3 revealed pervasive effects of goal pursuit

on behaviour (attention) outside the decision-making period, we reasoned that

neural areas may also track variables related to goal pursuit between decisions. In

particular, we looked at the regressor of ‘goal progress’ which captures an individ-
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Figure 4.4: Modulation of value-related activity in ROIs over the course of goal pursuit,
where the red dots in the brain images indicate the ROI location for activity shown in
each plot. Here we show the effect of value on the BOLD signal (beta weight) as a
function of the proportion of the goal completed, binned for illustration. Blue shows
the impact of current goal value, while orange shows the impact of alternative goal
value. Error bars depict s.e.m., while dots show beta weights for individual participants
(n = 30 participants). In the striatum (left), there was a significant reduction in the
representation of alternative goal value across goal progress (orange line; stars indicate
significant interaction between alternative goal value and goal progress; Wilcoxon signed
rank, Z = 2.37, P = 0.009, n = 30), parallel to the reduction in sensitivity to alternative
goals seen in behaviour. In contrast, representations of the current goal value were
maintained throughout goal pursuit in all ROIs.

ual’s position in the goal (proportion of net completed), and is stable across trials.

Activity in a wide range of areas increased as an individual progressed towards

completing the goal, including medial prefrontal cortex, striatum, and cingulate

areas, as well as large regions of the occipital, and parietal cortices (‘goal progress’

regressor). However, the results of our inter-trial analysis reveal a much smaller

subset of areas which included medial prefrontal cortex and right hippocampus

continuing to track progress with the goal even between decisions (Fig.4.5). The

peak of activity in medial areas was in the ventromedial prefrontal cortex, vmPFC.
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Figure 4.5: Activity tracking goal progress at decision versus between decisions. a
Cluster-corrected activity representing goal progress time-locked to the onset of the
decision period. b Cluster-corrected activity representing goal progress time-locked to
the intertrial fixation cross. While there was widespread activity in the occipital and
parietal areas at decision time (a), the majority of these areas did not track goal progress
between decisions, where the highest peak was in the vmPFC.

4.3.4 Baseline vmPFC activity predicts the degree of goal-
commitment across individuals

Previous studies have found that baseline vmPFC activity (activity before a de-

cision) predicts biases or priors which affect subsequent decision-making (Abitbol

et al. 2015; Vinckier et al. 2018). As vmPFC tracks goal progress between decisions,

we hypothesised that the strength of this baseline vmPFC signal would predict the

degree of commitment bias (unwillingness to switch goods) across individuals.

We extracted baseline activity on a trial-by-trial basis in our vmPFC region

of interest, and quantified the extent to which pre-decision activity was tracking

goal progress for each individual. We found this baseline goal-related activity

correlated with an individual’s bias towards persisting with the goal during the
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decision-making task (Relationship between baseline vmPFC and persistence bias:

Spearman’s r = 0.49, p = 0.006; Fig.4.6b).

We performed two control analyses to determine the specificity of this effect.

First, we confirmed that baseline goal-related activity in dACC and striatum

did not predict behavioural persistence (ACC: Spearman’s r = 0.19, p = 0.327

n.s.; ventral striatum: Spearman’s r = 0.09, p = 0.644 n.s.). Note these ROIs

were previously selected because, like vmPFC, they also contained value-related

activity. Second, we found that activity within vmPFC related to the decision itself

(rather than pre-stimulus) did not show this relationship to behavioural metrics of

persistence (Spearman’s r = 0.33, p = 0.079, n.s.). For full details and plots of

these control analyses, see appendices (Fig.B.6).

If baseline vmPFC activity also relates to the degree to which attention is

oriented towards the current goal, we reasoned that it should also correlate with

differences in goal-directed attention in the second, decision-free task. This was

indeed the case – across participants the strength of the baseline goal-progress signal

in vmPFC predicted greater accuracy for the current goal relative to alternative

goals in the attention task (Spearman’s r = 0.50, p = 0.005; Fig.4.6a). This was

particularly striking as the spatial attention task was carried out in a separate

session outside the scanner.

4.3.5 The relationship between goal-oriented attention and
persistence is mediated by baseline vmPFC activity

We found relationships between goal-directed attention, pre-stimulus goal-related

activity in vmPFC, and persistence with the goal. In this final analysis, we

used a mediation analysis to probe these relationships. The measurement of

baseline vmPFC activity is taken at the onset of the choice, which is between goal-

oriented attention (before choice onset), and persistence bias (at choice time). We

therefore conducted a mediation analysis to ask whether the relationship between

goal-oriented attention and persistence could be mediated by baseline vmPFC.

Indeed, our results support this idea, because the relationship between attention
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Figure 4.6: Correlation between baseline vmPFC activity and individual difference
metrics of behaviour. (a) Baseline tracking of goal progress is plotted against goal-
oriented attention bias, from the spatial attention task outside the scanner. Dots show
data points for individual participants, line shows regression. (b) Baseline tracking of
goal progress is plotted against persistence bias, which is the tendency to over-persist
with the goal compared to the tree-search model. Dots show data points for individual
participants, line shows regression.

Figure 4.7: Mediation analysis table.

and persistence disappears when vmPFC activity is included in the same model,

while vmPFC activity remains predictive of goal persistence (Table 4.7).
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4.4 Discussion

Maintaining the balance between commitment and abandonment during goal pur-

suit may be supported by separate networks involving vmPFC and dACC respec-

tively. We found that between decisions, a network of medial prefrontal areas

centred on vmPFC continue to track progress with the current goal when this

variable is no longer observable. We find that across individuals, baseline vmPFC

activity (activity before the choice is presented) predicts both commitment to goals

and goal-oriented attention in our task.

Our finding that vmPFC regions consistently track progress with the goal may

relate to other studies finding sustained representations of contextual variables

between decisions including in both rodent mPFC (Bari et al. 2019) and non-

human primate vmPFC (Mehta et al. 2020). For example, one study found that

neurons in rodent medial prefrontal cortex persistently represented long-term state

variables in their firing rates including the values of individual actions (biasing

choice) and the overall sum of action values (biasing response times) (Bari et al.

2019). These findings are consistent with theories that these areas carry relevant

unobservable variables for guiding action, or in the language of reinforcement

learning, the ‘current state’ (Wilson et al. 2014; Schuck et al. 2016). The manner in

which contextual state variables sustained in persistent mPFC activity influences

behaviour has been related to the dynamics through which recurrent activity in

artificial neural networks biases subsequent processing (Blanco-Pozo et al. 2024).

Consistent with the idea that sustained vmPFC activity modulates behaviour,

pre-stimulus activity in vmPFC predicted individual differences in attention and

persistence in our task. This finding builds on growing evidence in both monkeys

and humans demonstrating baseline vmPFC activity influences how options are pro-

cessed and subsequently which choice is made (Lopez-Persem et al. 2016; Vinckier

et al. 2018; Abitbol et al. 2015; Mehta et al. 2020). Baseline vmPFC activity has

been argued to bias upcoming choices in line with prior contextual factors, including

both stable preferences (such as tastes in music or food types; (Lopez-Persem et al.
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2016)), and dynamic background states (such as satiety or mood; (Abitbol et al.

2015; Vinckier et al. 2018)). Our results provide evidence that another dynamic

state, namely goal pursuit, modulates behaviour through this baseline activity. We

argue that our results also offer a possible mechanism for these effects: sustained

vmPFC activity represents the relevant current state, driving global changes in

top-down attention and affecting how options are subsequently processed.

In various contexts, medial prefrontal cortex has been shown to support the

selection of goal-relevant information at the time of decision, flexibly adapting

to changes in the current goal (Grueschow et al. 2015; Rudorf and Hare 2014;

Castegnetti et al. 2021; Trudel et al. 2021; Frömer et al. 2019), possibly through

compression of goal-irrelevant information (Mack et al. 2020). Other studies have

linked vmPFC activity to visual attention specifically, both responding to exoge-

nous manipulations of attention (Lim et al. 2011; Hare et al. 2011), and in mediating

the allocation of visual attention (Wolf et al. 2014). Preparatory activity in vmPFC

has also been shown to predict memory-guided attention in cases where people

anticipate upcoming events (Günseli and Aly 2020; Small et al. 2003). Here we

present results bringing together these bodies of research, suggesting that the role

vmPFC plays in selecting goal-relevant information is linked to visual attention.

Our results also reveal how neural value representations at the time of decision-

making change dynamically across goal pursuit, consistent with attentional prior-

itization of the current goal. In chapter 3, we found that late in goal pursuit

and compared to an optimal model, people demonstrated reduced sensitivity to

the value of alternative goals compared to the value of the current goal. When the

value of alternatives lost influence over behaviour, this was mirrored by a reduction

in sensitivity to alternative value in the ventral striatum. While we are not aware

of other studies showing this pattern, ventral striatum is known to respond to goal

pursuit, for example through striatal dopamine ramps during goal approach (Howe

et al. 2013; Hamid et al. 2016a).

Finally, we found both dACC and dlPFC positively co-varied with the value of

abandonment, as well as being more active when participants choose to abandon
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their current goal. This is consistent with previous work showing that activity in

these neural areas, and in dACC in particular, represents the value of alternative

options (Fouragnan et al. 2019), and is more active when an individual disengages

from the present behavioural policy (Kaiser et al. 2021; Stoll et al. 2016) or explores

the environment (Trudel et al. 2021; Tervo et al. 2021). In fact, when people switch

out of an exploitative state towards exploration, dACC activity predicts changes in

task representation within vmPFC (Muller et al. 2019). Our findings are consistent

with the idea that vmPFC maintains the current behavioural goal, while dACC

underpins behavioural flexibility during goal pursuit. Consistent with this and

in contrast to the striatal effects, we found relatively sustained representations of

alternative option value throughout the goal in dACC.

4.5 Contributions

This chapter includes work from an upcoming publication in Nature Human Be-

haviour: Holton, E., Grohn, J., Ward, H., Manohar, S.G., O’Reilly, J, & Kolling,

N. (2024). Goal commitment is supported by vmPFC through selective attention.

The analyses in this chapter were supervised by Nils Kolling, Jill O’Reilly

and Jan Grohn.
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Damage to vmPFC reduces goal

persistence

This chapter investigates whether vmPFC is causally involved in goal persistence

in a population of patients with lesion damage. In chapter 4 we found that

vmPFC showed sustained goal-related activity which predicted individual differences

in persistence with a goal among healthy individuals. Here we demonstrate this

vmPFC region is responsible for increased commitment to a current goal: patients

with damage to the same region of vmPFC have reduced goal persistence compared

to lesion controls and age-matched controls. Importantly, we show this relationship

between lower goal persistence and damage to this region of vmPFC is not explained

by higher stochasticity. These patients choose to abandon their current goal at

appropriate times, thereby performing better than patients with damage elsewhere

who tend to over-persist with goals.

5.1 Introduction

The aim of this chapter is to test whether vmPFC plays a necessary role in support-

ing goal commitment. In the previous chapter, we found that vmPFC tracked goal

pursuit across trials, and predicted individual differences in how willing people were
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to abandon their goal as well as their degree of goal-oriented attention. However,

vmPFC could be correlating with goal persistence without playing a direct causal

role. In this chapter, we use the same paradigm in a group of twenty-three lesion

patients and a population of age-matched healthy control participants to ask the

critical question of whether vmPFC supports goal commitment. To answer this

question, the chapter is divided into two halves, investigating commitment first

and then addressing possible behavioural confounds.

In the first half of the chapter, we investigate whether neural damage to vmPFC

is linked to reduced commitment to the current goal through two independent

analyses. In the first analysis, we take a voxel-based approach to identify neural

areas where damage predicts lower goal persistence, diagnosing a region in vmPFC.

In the second analysis, we start with the pre-defined region of interest from our

fMRI study and show that patients with damage here have lower persistence

compared to lesion controls and age-matched controls. These two independent

analyses converge on the same patients.

In the second half of the chapter, we perform control analyses to address the

question of whether vmPFC damage could result in lower persistence because

patients are responding more randomly. This is critical because previous studies

have found patients with vmPFC damage show impairments at guiding decisions

using value (Noonan et al. 2017; Fellows and Farah 2007), and in our task higher

stochasticity will be associated with more abandonment of the goal. Crucially,

we do not find that patients’ use of value is noisier, as formalised through inverse

temperature. Moreover, since people generally over-persist in this study (compared

to an optimal model), we should find that if patients are truly less biased to

persist rather than responding more randomly, they should show an advantage

in performance. Indeed, we find that the vmPFC group perform better than other

lesion patients, and no worse than healthy controls.
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5.2 Methods

5.2.1 Participants

Twenty-six patients with brain lesions (mean age=58) and twenty-seven age-matched

control participants (mean age=59) took part in the study. Of the lesion patients,

one was excluded because they failed to pass the initial comprehension questions,

and two were excluded because they were unable to complete the task. Of the

remaining twenty-three individuals in the study, sixteen had damage within the

frontal cortex and the remaining seven had damage to areas outside frontal cortex

(see Fig.5.1a for overlap map of lesion damage). The patient population was

recruited from a database of individuals who had previously visited the John

Radcliffe Hospital and consented to be contacted for research studies. Ethical

approval for the patient study was obtained by the London Fullham Research Ethics

Committee (IRAS project number: 242551; REC Reference number: 18/LO/2152).

All participants gave written informed consent before the experiment. Participants

were paid £15/hour plus a performance-dependent bonus between £8-12.

Data collection took place virtually, over a single session where the participant

completed an online version of the task (hosted on Pavlovia), while the researcher

remained on the telephone throughout the session. The patient group received

the same training and were required to pass the same comprehension questions

before proceeding to the main task as described in chapter 3. The main task

consisted of 250 trials total. Rather than use variable schedules, the same schedule

was used across all participants, in order to maximise the control of conditions

for comparison of lesion effects. The age-matched controls completed the same

schedule and training procedure online, and were recruited through Prolific.co.

For a description of the task itself, see Experimental Paradigm in chapter 3.

5.2.2 Sanity checks

Before investigating the effects of neural damage in this task, we began by per-

forming several sanity checks. First, as for the healthy fMRI cohort, we performed
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a simple regression analysis to determine whether participants were sensitive to

the critical elements of the task: the offers for the current and best alternative, in

addition to the contents of the net. To do this, we predicted abandonment decisions

in a logistic regression using the contents of the net and the three offers (current

goal, best alternative offer and worst alternative offer) as regressors.

Next, we confirmed that the tree-search model was also the best model of

behaviours in both groups (lesion patients and age-matched controls). As described

in chapter 3 methods, we used a leave-one-out cross validation analysis to verify

the best fitting behavioural model.

5.2.3 Analyses of persistence

Analysis 1: Voxel-wise lesion behaviour mapping

We began by investigating the relationship between brain damage and persistence

biases independently from the priors that resulted from our fMRI study. To

investigate areas causally relevant for persistence in the task, we performed a voxel-

wise analysis predicting behaviour from maps of the patients’ neural damage (Bates

et al. 2003; Karnath et al. 2018). This process involves identifying voxels at which

damage predicts a difference in the behaviour of interest compared to individuals

with lesions sparing this voxel. Analagous to fMRI analyses, this creates a map of t-

statistics (where damage predicts the behaviour of interest), which are thresholded

and cluster corrected to control for multiple comparisons.

We focussed on goal commitment, quantified as an individual’s persistence bias

from the tree-search model, as our behaviour of interest. We used a threshold

of t > 2.3 where damage predicted lower persistence biases (corresponding to

p < 0.01, one-sided test because we were interested in where damage will reduce

persistence biases).

We controlled for multiple comparisons by performing cluster correction using

the False Discovery Rate method (FDR; Genovese et al. (2002); Karnath et al.

(2018)). Using a permutation-based approach, we quantified the maximum cluster

size we would expect from our lesion data-set due to chance, at the same significance
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threshold. On each permutation (total 1000 iterations), we shuffled individual

persistence biases and performed the same voxel-wise regression analysis with the

shuffled biases. We created a distribution of clusters found across all permutations,

and defined the minimum cluster size for significance at the 95% cut-off of all

clusters found by chance, resulting in a minimum cluster size cut-off of 255 voxels

for our empirical analysis.

Analysis 2: ROI-based analysis

Next, we performed a group-wise comparison where we split lesion patients based

on whether they were damaged in the region pre-defined by our fMRI study. Our

fMRI study had identified a subset of areas carrying signals relating to goal-pursuit

even between decisions, focussed on vmPFC. We split all patients into two groups

on the basis of whether they were damaged at an ROI centred on the peak of this

inter-decision fMRI activity. Following the same procedure described in chapter

4, we extracted the region of interest with a 3 voxel radius (7.2mm3) centred on the

peak of activity tracking goal progress during the inter-trial interval in our fMRI

study. We then tested for a difference in persistence biases between the two groups

of patients, and against the age-matched controls. We used a one-sided permutation

test to test for difference in means between groups, due to the small sample sizes

and non-normally distributed biases (n.b. we used a one-sided test based on our

hypothesis that damage to vmPFC would reduce persistence; although note the

difference remains significant if we were to perform a two-sided test).

Our previous voxel-wise regression analysis identified a region of vmPFC which

included damaged voxels from five unique patients. Our ROI-based lesion analysis

independently identified four out of the five same patients when selecting on the

basis of the pre-defined fMRI region. For the analyses which follow, we compared

the four patients identified using the fMRI ROI (‘lesion in vmPFC ROI’) to other

patients (‘lesion controls’) and age-matched healthy controls (‘age-matched con-

trols’). Note that if we were also to include the fifth patient in the vmPFC sample

(identified from the voxel-wise regression analysis), all the same conclusions hold.
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We chose to perform further analysis on the four patients identified from the fMRI

ROI to avoid circularity (because the voxelwise analysis explicitly searched for

areas predicting reduced persistence). When relevant, the analysis with all five

patients is included in the appendices.

5.2.4 Performance analysis

If damage to the identified region of vmPFC causes participants to be less biased

towards over-persisting (rather than more stochastic and thus more likely to switch

goals), we would counter-intuitively expect these patients to perform better than

other groups. We quantified performance as the mean number of trials taken to

complete a goal, where a lower value means goals were completed faster. Since all

participants in the patient task completed the identical schedule, this measure is

not vulnerable to schedule-specific artefacts. We then tested whether the vmPFC

cluster patients performed better than patients with damage elsewhere, and better

than lesion controls, using a one-sided parametric test (we used a one-sided test

based on our hypothesis that reduced bias should improve performance but note

the difference remains significant if we were to perform a two-sided test).

5.2.5 Control analyses

We performed several subsequent control analyses to verify that the four patients

with damage in the vmPFC ROI were truly less biased to persist, rather than

persisting less for other reasons (such as using a drastically different strategy, or

responding more randomly).

First, we verified that the vmPFC lesion group were responding sensibly by

quantifying the number of trials in which the worst alternative was selected (a

clear irrational choice). We used two-tailed permutation tests to verify there was

no difference between the vmPFC lesion group and other patients, and between

the vmPFC lesion group and age-matched controls.

Second, we confirmed that behaviour among patients with damage to this region

was still best explained by the same behavioural model as healthy individuals
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(the ‘tree-search model’), and not by a more simple strategy, by fitting the four

behavioural models described in chapter 3 (see behavioural models).

Finally, we verified that the vmPFC patients were not more stochastic in their

decision process. We quantified stochasticity as inverse temperature, which is

the beta weight associated with the tree-search value in our logistic regression

predicting abandonment. We used two-tailed permutation tests to verify there was

no difference in stochasticity between the vmPFC lesion group and other patients,

and between the vmPFC lesion group and age-matched controls.

5.2.6 Spatial task in lesion patients

Our patient group also performed the interleaved spatial task. We quantified

spatial attention bias as the accuracy advantage for the current goal item over

the alternative item, as described in chapter 3 (spatial attention task analyses).

We predicted the vmPFC group would show a lower accuracy advantage for the

goal item over the alternative items in the interleaved task, since attention would

be captured less by the goal.

5.3 Results

5.3.1 Lesion patients perform sensibly on the task

Both the lesion patients and the age-matched controls performed sensibly on the

task (see Fig.5.1b). They were more likely to switch given high alternative offers

(impact of best alternative offer: lesion patients, β = 0.44, t(22) = 5.74, p < 0.001;

age-matched controls, β = 0.34, t(26) = 8.77, p < 0.001), less likely to switch when

the current goal offer was high (impact of current goal offer: lesion patients, β =

−0.35, t(22) = −5.77, p < 0.001; age-matched controls, β = −0.35, t(26) = −8.65,

p < 0.001), and less likely to switch after accumulating more goods (impact of

net contents: lesion patients, β = −0.67, t(22) = −13.41, p < 0.001; age-matched

controls, β = −0.64, t(26) = −29.19, p < 0.001). For neither group did the worst

alternative offer have a significant impact on goal abandonment choices (impact of
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Figure 5.1: Lesion maps and simple behaviour. (a) Lesion overlap maps showing the
location of lesions across the entire cohort (n=23 total) (b) Simple regression showing
both lesion patients and age-matched controls were sensitive to the main elements of the
task (offers for the current and alernative goal, as well as accumulated goods). Dots show
beta weights for individual participants, error bars depict s.e.m.

second-best alternative offer: lesion patients, β = −0.04, t(22) = −1.37, p = 0.183;

age-matched controls, β = −0.01, t(26) = −0.61, p = 0.550).

In addition, for both patients and controls, the tree-search model provided the

best description of overall behaviour within each group (See appendices; Fig.C.1).

For the next set of analyses, we asked how the location of lesion damage affected

persistence bias, defined as the tendency to persist with the chosen goal beyond

the point at which the tree-search model would switch, as the key behavioural

marker of goal commitment.

5.3.2 Damage to vmPFC reduces persistence biases

We began by investigating whether damage to particular areas reduced persistence

in the lesion patient group, independent from any priors from our fMRI study.

Using a voxel-wise regression analysis, we asked at what locations damage predicted

a reduction in persistence bias. Independently corroborating the findings of our
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fMRI study, the only region where damage predicted a reduction in persistence

bias was in vmPFC (Fig.5.2a; green cluster). The vmPFC cluster survived whole-

brain cluster correction as an area where damage leads to reduced persistence biases

(cluster threshold t > 2.3; p < 0.01, one-sided, cluster size = 269 voxels, threshold

cluster correction size = 255 voxels, cluster peak = [0, 42, −14], t-statistic at cluster

peak = 2.74). The vmPFC region identified in the whole-brain voxel-wise analysis

contained damaged voxels from 5 patients (out of a total of 23 lesion patients

who took part in the study).

5.3.3 Convergence between lesion study and fMRI study

We then asked how much the region identified in our lesion patient study aligned

with the findings of our fMRI study (Fig.5.2b). Our fMRI study had identified

a subset of areas carrying signals relating to goal-pursuit even between decisions,

focussed on vmPFC. We split all patients into two groups on the basis of whether

they were damaged within a region of interest at the peak of this fMRI activity,

found in vmPFC (ROI centred on the peak of the activity tracking goal progress

during the inter-trial interval in our fMRI study; shown in Fig.5.3, left). There

were four lesion patients with damage to this ROI.

Patients with damage to this region were less persistent than both patients

with lesions elsewhere and age-matched healthy controls (persistence biases among

patients damaged within fMRI ROI: n = 4, mean = 2.33, std = 2.31; persistence

bias among other patients: n = 19, mean = 6.12, std = 2.88; persistence bias

among age-matched controls: n = 27, mean = 5.29, std = 2.74; difference between

vmPFC group and other patients: permutation test, difference in means = 3.79,

p = 0.012, one-sided; difference between vmPFC patients and age-matched controls:

permutation test, difference in means = 2.97, p = 0.023, one-sided).

We found these four patients who had damage within the region pre-defined

by our fMRI study corresponded to four (out of the five total) patients identified

from our independent voxel-wise patient analysis. Therefore our fMRI study and
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Figure 5.2: VmPFC damage reduces goal persistence. (a) Results from the whole-brain
voxelwise analysis. Green shows areas where lesion damage predicts lower persistence
biases. Above-threshold t-statistics (t > 2.3 before cluster correction) are displayed
for illustrative purposes. We controlled for multiple comparisons by performing cluster
correction using permuation based false discovery rate analyses. The vmPFC cluster
survived whole-brain cluster correction. (b) Patients with damage to the vmPFC region
identified in the fMRI study show reduced persistence bias. Patients were split into two
groups depending on whether they were damaged within the ROI centred on the peak of
BOLD activity tracking goal progress between decisions in healthy participants (shown
with red dot, left image). This area was damaged in 4 patients, corresponding to 4 out
of the 5 patients independently identified in the voxelwise analysis in (a). Patients with
damage to this region showed lower goal commitment than patients with lesions elsewhere
and age-matched controls (right plot). Error bars show s.e.m. in each group; green dots
depict individual biases.
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lesion patient study independently converge to identify the same vmPFC region

as being relevant for goal commitment.

5.3.4 Reduced persistence following vmPFC lesions is not
explained by higher stochasticity

Next, we ruled out the possibility that the vmPFC damaged group were simply

performing worse in some general way, for example by making random choices or

forgetting the goal. An important point to note is that, because participants in

general over-persist, a reduction in persistence biases should lead to better task

performance, if participants switch goals at points at which it is beneficial to do

so (rather than making random switches due to, for example, task disengagement).

This is exactly what we find: the four patients with damage to the vmPFC ROI

in fact perform significantly better than patients with damage elsewhere, and no

worse than age-matched healthy controls (Fig.5.3; performance is quantified as

mean trials to fill a net, i.e. smaller values indicate goals are completed faster).

Finally, we used further post-hoc analyses to verify that a) vmPFC patients

were not selecting the worst alternative (indicative of irrational switching), b)

vmPFC patients were not using a different normative model to solve the task

and c) vmPFC patients were not responding more stochastically as measured by

inverse temperature.

We found the vmPFC group did not switch to the worst alternative option any

more than the other groups, suggesting they were not switching goals randomly

(Fig.5.4a; Number of switches to worst alternative; vmPFC group, mean = 1.75,

std = 1.1; other patients, mean = 1.3, std = 1.7; age-matched controls, mean =

1.1, std = 1.3; vmPFC vs. other patients: two-sided permutation test, difference

in means = 0.49, p = 0.592, n.s.; vmPFC vs. age-matched controls: two-sided

permutation test, difference in means = 0.64, p = 0.464, n.s.). Consistent with the

idea they were switching goals sensibly, the vmPFC group switched to choosing

the best alternative option more than either of the other groups (Fig.5.4b; Number

of switches to best alternative; vmPFC group, mean = 37.3, std = 14.8; other
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Figure 5.3: VmPFC lesion group perform better than other lesion patients, and no worse
than age-matched healthy controls. Performance was measured as the average number
of trials to complete a goal, where lower scores correspond to faster goal completion.

patients, mean = 19.3, std = 7.4; age-matched controls, mean = 19.9, std = 8.1;

vmPFC vs. other patients: two-sided permutation test, difference in means = 17.99,

p = 0.010; vmPFC vs. age-matched controls: two-sided permutation test, difference

in means = 17.36, p = 0.010).

We did not find any evidence that vmPFC patients were using a simpler re-

sponse strategy, as choices were again best described by the tree-search model

(Fig.5.4c). We formally quantified stochasticity as inverse temperature when pre-

dicting choices using the tree-search model, and found the vmPFC group showed

no difference compared to other patients or age-matched controls (Fig.5.4d; Inverse

temperature; vmPFC group, mean = 0.57, std = 0.04; other patients, mean = 0.51,

std = 0.22; age-matched controls, mean = 0.61, std = 0.19; difference between

vmPFC group and other patients: two-sided permutation test, difference in means

= 0.06, p = 0.572, n.s.; difference between vmPFC patients and age-matched
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controls: two-sided permutation test, difference in means = 0.04, p = 0.633, n.s.).

Note the inverse temperature parameter has good parameter recoverability (see

appendices; Fig.A.2).

Taken together, these results suggest that patients with damage to this region of

vmPFC are not simply using a different task strategy or responding more randomly,

but instead are less biased towards over-persisting with a goal.

5.3.5 Attention results in lesion patients are inconclusive

While as predicted, the vmPFC group did not show a significant accuracy advantage

for stimuli related to the current goal (mean goal item accuracy - mean alternative

items accuracy: mean = 0.019, std = 0.030, Wilcoxon: n = 4, T = 2.0, p = 0.375),

we cannot interpret this result since we also did not detect goal-oriented spatial

attention effects generally among patients with lesions elsewhere (mean goal item

accuracy - mean alternative items accuracy: mean = 0.032, std = 0.127, Wilcoxon:

n = 18, T = 80.0, p = 0.568). Accuracy in the spatial attention task for each

group is shown in Fig.5.5, and reaction times for the spatial task are shown in the

appendices (Fig.C.4). Predicted by the fact that neither patient group showed goal-

directed attention, there was also no difference in attentional biases between groups

(permutation test for difference in goal item accuracy advantage between groups:

mean difference=0.013, p = 0.524, n.s.). Given we could not detect goal-oriented

attentional effects in the lesion patient population generally, we could not determine

whether lesion location affects goal-oriented attention in this study. As illustrated

in Fig.5.5, accuracy was generally much lower in this population than for the fMRI

cohort. Given the lack of goal-oriented attention effects in this older cohort with

lesion damage, we did not perform any further analyses on the attention data.

5.4 Discussion

Across the last two chapters, we present multiple converging lines of evidence

demonstrating that vmPFC plays a key role in supporting commitment to a current
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Figure 5.4: Post-hoc analyses on groups. The vmPFC group includes the four patients
who had lesion damage in the pre-selected ROI from the fMRI study. (a) Number of
times participants switched to the worst alternative offer (out of 250 trials total). The
vmPFC group did not perform this kind of switch any more than lesion controls or age-
matched healthy controls, suggesting they were not making random choices. Error bars
show s.e.m. across groups, dots show number of switches per individual. (b) Number
of times participants switched to the best alternative offer (out of 250 trials total). The
vmPFC group were more likely to switch to the best alternative offer than either the lesion
controls or age-matched healthy controls, supporting the idea they were making sensible
switch choices. Error bars show s.e.m. across groups, dots show number of switches per
individual. (c) Analyses of model strategy used by the vmPFC lesion group. As for the
healthy fMRI participants and other groups, the tree-search model is the best description
of behaviour. Error bars show s.e.m. of cross-validation accuracy. (d) Post-hoc analysis
comparing inverse temperature across the three groups, where abandonment choices are
predicted using tree-search value. This suggests patients with damage within the vmPFC
ROI are not simply more stochastic since they show no difference in inverse temperature.
Error bars show s.e.m., dots show individual data points.
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Figure 5.5: Spatial attention task in lesion patients. Neither the control lesion group,
nor the vmPFC lesion group show a significant accuracy advantage for the current goal
item. This contrasted with the MRI participants and healthy age-matched controls
(stars depict significance for wilcoxon tests comparing goal stimuli accuracy against best
alternative stimuli accuracy. MRI patients: p=0.035; EC patients: p=0.006; lesion
patients: p=0.568; vmPFC patients: p=0.375), but limits our interpretation of the
impact of lesion location on goal-oriented attention.

goal. In the last chapter, our fMRI study found that the vmPFC carried sustained

goal-related information between decisions in our task, and baseline activity before

the decision predicted the two independent behavioural metrics of goal capture:

both an individual’s bias to persist with the current goal and their bias to prioritize

goal-related stimuli in attention. In this chapter, we demonstrated that vmPFC

plays a causal role in the process of goal commitment: patients with damage to the

same region are less biased to continue persisting with the current goal. Through

a voxelwise analysis of damage in our patient sample, we identified a vmPFC

cluster in which damage predicted reduced persistence biases. The area identified

in patients closely corresponded to the area involved in persistence among healthy

individuals, discovered in our fMRI study.

Our results expand on previous reports that lesions to this area in both humans

and primates interfere with the ability to prioritize relevant decision variables, for

example, in cases when a distracting alternative is introduced (Noonan et al. 2010;

Noonan et al. 2017). However in our task, the capacity to maintain the relevance

of alternative goals actually provides an advantage, since healthy people tend to
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ignore good alternatives in favour of persisting. While previous lesion studies have

found this patient population to behave more stochastically (Noonan et al. 2017;

Camille et al. 2011), notably lower persistence biases among vmPFC lesion patients

in our task cannot be explained by an increase in stochasticity. In fact, we find

that patients with vmPFC damage performed better than other lesion patients and

no worse than age-matched controls. In a goal-pursuit context, healthy individuals

may have a tendency to over-constrain the decision space by focusing only on

the current goal and ignoring alternatives. In contrast, a lesion to this area of

vmPFC may reduce capture by the current goal, allowing good alternative options

to maintain their relevance throughout goal pursuit. We note that, while this is

beneficial in our task, it is likely to be advantageous to constrain the task space

in ecological goal-pursuit settings. As discussed in chapter 1, biases towards goal

commitment could result from efficient neural resource allocation (attending to

pursuing the chosen goal) and help to effectively structure behaviour over time.

These findings are relevant for understanding why vmPFC damage can lead

to difficulties with real world goal-directed behaviours, for example in classic tests

like the multiple errands task (Tranel et al. 2007). As discussed in chapter 2, a

key part of planning and pursuing goals in the real world consists of selecting the

relevant information in complex environments with many distractions. The ability

to sustain the intended goal by constraining options to the relevant variables will

be critical for pursuing goals in the real world.

5.4.1 Summary

The findings from the last three chapters suggest that goal pursuit leads to global

changes in how the environment is processed, prioritizing the current goal in

attention and decisions. In chapter 3, we found that goal commitment was related

to pervasive changes in goal-oriented attention related to commitment. In chapter

4 we found goal-directed biases in both decision-making and attention were related

to pre-decision vmPFC activity. In chapter 5 we demonstrated that vmPFC

was causally responsible in supporting commitment to a goal, as patients with
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damage to this region are less persistent. We argue that goal-directed selective

attention, supported by vmPFC, could provide a mechanism for sustaining goal

pursuit. While goal commitment may manifest in seemingly irrational tendencies

to persist with a selected goal, the ability to filter information to prioritize the

chosen task would be critical in ecological settings.

5.5 Contributions

This chapter includes work from an upcoming publication in Nature Human Be-

haviour: Holton, E., Grohn, J., Ward, H., Manohar, S.G., O’Reilly, J, & Kolling,

N. (2024). Goal commitment is supported by vmPFC through selective attention.

Nils Kolling, Jill O’Reilly, Jan Grohn and Sanjay Manohar all contributed to the

supervision of analyses in this chapter. Harry Ward contributed to data collection.
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6
Effects of mPFC lesions on the

components of planning

In this chapter, we turn to a different element of pursuing goals: planning future

action. We investigate how medial PFC damage affects the components of planning

in two pre-existing paradigms, namely the two-step task and four-in-a-row. While

the two-step task involves planning over a small horizon of binary choices, the four-

in-a-row task presents subjects with long horizons of upcoming choices in a complex

state space. This presents a more naturalistic planning setting requiring multiple

cognitive processes for effective decision making. Damage to mPFC did not affect

behaviour in the two-step task, although we found that model-based planning was

generally attenuated across all participants in our older cohort. However, medial

PFC damage did selectively impair performance in the four-in-a-row paradigm. On

closer inspection, we found this was explained by an increased tendency to overlook

valuable features. This was contrasted with relatively preserved capacity to simulate

future states, or recognise good heuristics for choice. We link this to a general

theory of mPFC involvement in selecting task-relevant information and guiding

goal-oriented attention.
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6.1 Introduction

A central idea in previous chapters has been that vmPFC supports the selection

and representation of relevant information for guiding goal-directed decisions. In

chapter 2, we argued this capacity will be particularly critical in complex en-

vironments where the sheer number of options and potential for interference is

high. This includes scenarios where the space of current options is large, or

where evaluating options requires planning into the future over an exponentially

growing decision tree.

In this chapter, we refer to our population of patients identified with an anatom-

ical vmPFC mask as ‘mPFC’ rather than ‘vmPFC’ for two reasons: (1) although

a vmPFC mask was used to classify lesion patients, there is widespread damage

extending into dorsal areas as shown in Fig.6.1, and (2) it is important to clarify

that the lesion group is not selected using the same procedure as the previous

chapter, because we did not have a prior hypothesis about the location of relevant

vmPFC activity (compared to the lesion study in chapter 4, where we could

directly test our hypothesis from the fMRI study in chapter 3).

In this chapter, we test the impact of mPFC lesions on the components of

planning, comparing behaviour to lesion patients with damage elsewhere in the

brain, and age-matched healthy controls. To investigate planning, we use two pre-

existing paradigms from the field of computational cognitive science: the two-step

task (Daw et al. 2011) and four-in-a-row (van Opheusden et al. 2023). Four-in-a-

row requires subjects to plan in a substantially larger state space than the two-step

task. We find that mPFC damage selectively affects planning in four-in-a-row,

but does not affect behaviour in the two-step task. Notably, however, our older

cohort generally show low markers of model-based planning in the two-step task

across all groups.

The planning deficits that mPFC patients show in four-in-a-row are related to

tendencies to overlook relevant valuable features in complex state spaces. This
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contrasts to relatively preserved capacity for other components of planning, includ-

ing simulating the future or or recognise good heuristics for choice. An impaired

ability to incorporate all the goal-relevant information could contribute to many of

the real-world examples of planning deficits in mPFC patients.

6.1.1 Medial prefrontal lesions and planning

Across a range of settings, mPFC damage has been associated with alterations

in planning or sequential decision-making. A traditional example of this is the

Multiple Errands task, where mPFC patients struggle to structure their own be-

haviour across a sequence of real-world errands in a shopping mall (Shallice and

Burgess 1991; Tranel et al. 2007). Patients with damage to mPFC also perform

worse in classic neuropsychological “planning” tasks such as the Tower of London

(Owen et al. 1990). However, real-world planning is a composite ability, requiring

multiple cognitive processes. While many studies point to general disturbances in

planning, the behaviours are consistent with a number of root cognitive deficits

including model-based simulation of the future, applying heuristics to guide choice,

or selecting and integrating all the right elements of the problem space. It remains

an unsolved research question which of these components leads to planning deficits

following mPFC damage.

A body of work has focussed on specific mPFC impairments in thinking about

the future, for example in imagining events at distant future time-scales (Fellows

and Farah 2005) or producing detail about the future (Bertossi et al. 2016a; Bertossi

et al. 2016b; Bertossi et al. 2017). Some studies have also suggested that temporal

discounting is disturbed in mPFC patients, finding patients prefer smaller more

immediate rewards over larger future ones (Peters and D’Esposito 2016; Sellitto

et al. 2010; although see Fellows and Farah 2005). These findings might suggest

that mPFC lesion patients have difficulties simulating possible futures.

However an intriguing alternative account is that planning deficits in mPFC

patients are not caused by impairments in simulating the future per say, but

by impairments in selecting what to simulate or what information is relevant.
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There are examples from other domains where down-stream deficits prove to be

a consequence of up-stream disturbances in how information is selected, such as

in goal-directed attention. For example, social theories of mPFC damage were

originally supported by evidence showing patients struggle with facial emotional

recognition (Hornak et al. 1996; Heberlein et al. 2008). However, this was later

shown to be mediated by alterations in orienting visual attention towards the eye

region of faces (Wolf et al. 2014), and the deficit in emotional recognition can

be ameliorated when attention is explicitly oriented to these features (Wolf et al.

2016; although see Vaidya and Fellows 2016).

Disturbances in selecting goal-relevant information may also explain some of

the inconsistent findings regarding the effects of mPFC lesions on value-based

decision-making. Specifically, mPFC patients show interference from irrelevant

value in multi-option scenarios (Noonan et al. 2017), contrasting to relatively intact

decisions between binary choices, when decisions do not depend on the selection

of relevant task variables (Vaidya and Fellows 2015a). In addition, when decisions

depend on integrating multiple dimensions rather than using a single dimension,

mPFC patients show more pronounced impairments (Vaidya et al. 2018; Pelletier

and Fellows 2019). Could deficits in complex planning tasks be explained by

alterations in guiding the decision-process to the relevant information?

6.1.2 Cognitive planning tasks

Planning depends on mental simulation of the future using an internal model of

the environment (Hunt et al. 2021; van Opheusden et al. 2023). A paradigmatic

laboratory planning task is the ‘two-step task’, designed to disentangle habitual

‘model-free’ learning from ‘model-based’ learning which utilises knowledge about

the structure of the environment (Daw et al. 2011). In this paradigm, receiving

reward depends on making a series of two sequential choices. The ability to plan

across the two choices using structural knowledge of the task can be dissociated

from simple repetition of reinforced (rewarded) action (although see Akam et al.
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(2015) and Russek et al. (2017) for examples of model-free algorithms resembling

model-based behaviour).

The two-step task allows for simulation over only two steps ahead at the most,

and individuals are presented with only binary choices at each step. Full exploration

of the decision tree is therefore a realistic possibility. In naturalistic environments,

planning is far more complex. Evaluating different actions can require simulation

over an indeterminate future horizon, and with limitless option possibilities. Given

the size of this state-space, real-life planning is likely to depend on multiple different

abilities, including selecting appropriate information as well as using approximate

methods of calculating value and limiting tree-search (Pearl 1988; Sutton and Barto

1998; Koller and Friedman 2009; Russell and Norvig 2016; Gershman et al. 2015).

Studying these complex behaviours in the laboratory while retaining computational

tractability has been a challenge.

A recently developed planning paradigm known as ‘Four-in-a-row’ involves

a much larger state space than previous laboratory paradigms (1.2 x 1016 non-

terminal states), making planning over all possible scenarios unfeasible for players

(van Opheusden et al. 2023; Ma et al. 2022). This task is a two-player game (played

against a computer opponent), which is an extension of the traditional game ‘tic-

tac-toe’. The aim is to place four consecutive pieces of your own color on a grid

before the opponent does. To play effectively, subjects must rely on heuristics

to evaluate states quickly, simulate future moves, as well as guide attention to

the relevant information.

6.1.3 Aims

A resounding message from many decades of frontal lesion research is the need

for planning tasks which deliver the necessary complexity to reveal subtle be-

havioural alterations, but also the interpretability to diagnose specific cognitive

functions. More complex paradigms supported by rich computational models of

behaviour provide new opportunities to strike this balance between complexity

and interpretability (van Opheusden et al. 2023). Our first aim was to determine
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whether planning deficits in mPFC patients differed based on the complexity of

the planning task by investigating performance in the two-step task and four-in-

a-row. Both tasks were run in mPFC lesion patients, control lesion patients, and

an age-matched healthy control sample.

Given that mPFC damage impaired performance in four-in-a-row (although not

in the two-step task), our second aim was to determine which components of plan-

ning contributed to the deficit. The computational model developed for the four-

in-a-row task allows planning to be broken down into three distinct components.

The first component is the capacity to identify good heuristics for evaluating states.

For example, knowing that a bus stop is a valuable feature if your aim is to travel

across town is based on a heuristic (you can recognise its worth without knowing

its exact value in your journey). The second component is the number of steps

planned into the future (the depth of forward simulation). This captures model-

based simulation of future possibilities. The final component is the tendency to

overlook valuable features on any trial (‘attentional lapse’). Rather than reflecting

systematic deviations in knowing what is ‘valuable’, this third component reflects

tendencies to miss important information on any trial. We find that mPFC im-

pairments in planning are specifically linked to this final component: the tendency

to overlook valuable features.

6.2 Experiment 1: Two-Step Task

6.2.1 Participants

For the two-step study, I analysed an unprocessed data-set previously collected by

members of the Manohar Lab from 2015-2018, at the John Radcliffe Hospital in

Oxford. The data-set consisted of a total of fifty lesion patients (mean age=58) and

twenty age-matched healthy control participants (mean age=68). Data from one

patient was not included because they failed to complete the task, leaving a total of

forty-nine lesion patients. Brain lesions were registered manually by a neurologist

prior to study recruitment. Patients were a priori assigned to the medial prefrontal
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Figure 6.1: Lesion maps and simple behaviour. (a) Anatomical mask of medial
prefrontal cortex from the Harvard-Oxford cortical atlas deployed in FSL (Jenkinson
et al. 2012). Patients were categorised a priori into mPFC and LC groups on the basis of
whether they had neural damage inside the mask. (b) Overlap of brain lesion masks for
the mPFC patients (left, pink) and lesion control patients (right, blue) who participated
in the two-step study. Colour bars shows number of patients with damage in each voxel.
(c) Same as (b) for the Four-in-a-row study analysed later in this chapter.

cortex (mPFC) group and lesion control (LC) group. The Harvard-Oxford cortical

structural atlas from FSL was used for mPFC lesion classification, by identifying

patients who had neural damage within the binarized mask of ventromedial frontal

cortex (map shown in Fig.6.1a; threshold > 0; Jenkinson et al. (2012)). All

individuals with damaged voxels within the mask were assigned to the mPFC

group (mPFC lesion group: N = 30; Fig.6.1b, left), while those where mPFC

was spared were assigned to the comparison lesion group (Lesion control group:

N = 19, Fig.6.1b, right).

6.2.2 Experimental Methods

All participants completed a variant of the two-step task (Daw et al. 2011), designed

to measure habitual versus goal-directed decision-making. The task involved mak-

ing repeated two-stage decisions in order to earn rewards (Fig.6.2a). On each trial,

participants first chose between two colours and then between two shapes. Of

crucial significance, each colour in step-one led to a specific set of shapes in step-

two with a 75% probability (“common transition”), but led to the opposite pair

of shapes in 25% of trials (“rare transition”). Of the four possible shapes which

could be offered in step-two, only one shape had a high probability of reward at

any point in time. This required participants to think strategically about which
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choice in step-one was most likely to lead them to the set of offers in the second

step inclusive of the high reward option.

The task is designed to measure the extent to which decision-makers are using

“model-free” or “model-based” estimates of value. A learner who uses a “model-free”

strategy will be more likely to repeat their first step choice after being rewarded at

the end of the trial, regardless of whether the transition between steps was common

or rare. However, a decision-maker who uses a model of the task structure will be

more likely to repeat their first step choice after being rewarded on a ‘common’

transition, but switch first-step choices when rewarded on a ‘rare’ transition.

To facilitate learning in the patient population, the reward probabilities in this

version of the task were stationary for long periods with abrupt shifts in reward

(Castro-Rodrigues et al. 2022; Akam et al. 2015; Doody et al. 2022), rather than

drifting continuously. Specifically, at any point in time one arm would be associated

with a high reward probability (80% chance of payout) while each of the other three

arms would be associated with low reward probabilities (8.3% chance of payout).

The high reward option was associated with the same arm for a period of 32

trials, before switching to a different arm (unannounced to the participant). The

entire study consisted of 288 trials (9 blocks of 32 trials). Participants received

standardised instructions (see appendices; Fig.D.1). Model parameters had good

recovery in this version of the two-step task (see appendices; Fig.D.2).

6.2.3 Two-step task statistical analyses

Performance and simple behavioural analyses

As a metric for performance, we looked at accuracy for the ‘planning’ choice at

step-one. Accuracy was operationalised as the proportion of correct choices for

step-one i.e. choices which, if the common transition occurred, would lead to the

rewarding shape offered at step-two. Given the probabilistic reward structure of

the task, this metric of performance is less noisy than overall reward. Step-one

choices rather than step-two choices were examined because only step-one choices
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can capture planning across two steps, through a model of the transition structure

between steps.

Next, we quantified the extent to which participants were sensitive to the

transition structure of the environment through reaction times. Participants highly

sensitive to the environmental model may be expected to slow down more after sur-

prising ‘rare’ transitions compared to predicted ‘common’ transitions (Nussenbaum

et al. 2020). For each participant, we computed the average step-two reaction times

following a rare transition versus following a common transition. Paired t-tests were

used to determine whether reaction times differed as a function of transition type.

Second, analysis of stay probability was used to assess model-free versus model-

based behavioural strategies (Daw et al. 2011; Otto et al. 2013; Worbe et al. 2016;

Friedel et al. 2014; Castro-Rodrigues et al. 2022). This is defined as the probability

of repeating the first-step choice on a trial as a function of the outcome (reward

versus no reward) and transition (common versus rare) on the previous trial. We

used a logistic regression model, where the outcome, transition and transition–

outcome interaction were all used as predictors to model stay choices. We then

looked at differences in the transition-outcome interaction across groups.

Reinforcement learning model

Choices were predicted using a reinforcement learning model with separate compo-

nents capturing model-based and model-free learning (Daw et al. 2011).

The task involves three states, with only one first-step state, and two second-

step states. In the following notation, s1,t corresponds to the first-step state taken

at trial t (which is always the same), while s2,t corresponds to the second-step state

(dependent on the first choice and transition). In each state, there are two available

actions (aA or aB). Below, a1,t refers to the first-step action taken at trial t, and

a2,t refers to the second-step action taken at trial t. Finally, the rewards for the two

stages are denoted by r1,t (always zero after the first-step), and r2,t (one or zero).
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Model-free algorithm The model-free algorithm updates the value of state-

action pairs according to a SARSA (λ) temporal-difference reinforcement learner

(Rummery and Niranjan 1994). At each stage i of the two-staged trial t, the value

for the chosen action (ai,t) is updated:

Qmf (si,t, ai,t) = Qmf (si,t, ai,t) + αδi,t (6.1)

Where α is a learning rate parameter, and the reward prediction error, (RPE; δi,t),

corresponds to the following:

δi,t = ri,t + Qmf (si+1,t, ai+1,t) − Qmf (si,t, ai,t) (6.2)

Note that the prediction error is driven by different sources of information after the

first versus second stage choices. At the first stage choice, reward is never received,

so the update is driven by the second-stage value, Qmf (s2,t, a2,t). At the second

stage choice, the update is driven entirely by the reward received, r2,t (while the

value of the next state is set to zero because the trial ends after two stages). Finally,

at the end of the trial, the value of the first-stage choice is also updated with an

eligibility trace. In other words, the RPE from the final choice is used to update

the first choice, multiplied by an eligibility parameter (λ) (Sutton and Barto 1998):

Model-based algorithm The model-based algorithm updates its values for step-

one using a model of the task structure – that is, the probabilities associated with

transitioning between steps. For example, if the state in step-two was unlikely to

occur after the first choice (rare transition of 25%), the algorithm correspondingly

updates the value of the action in state one that most commonly reaches the

rewarded state. Below, sA and sB denote the two possible second states. The

value of the step-one actions (aj) are computed in the following way according

to the Bellman equation:

123



6. Effects of mPFC lesions on the components of planning

Qmb(s1, aj) = P (sA|s1, aj) max
a∈aA,aB

Qmf (sA, a) + P (sB|s1, aj) max
a∈aA,aB

Qmf (sB, a)

(6.3)

This is re-computed at every trial from the current estimates of value. At step-two,

model-based learning is equivalent to model-free learning, since the second step

value purely reflects an estimate of the immediate reward (Daw et al. 2011).

Choice algorithm The influence of model-based versus model-free strategies

can be quantified in the first step. The probability of choosing each first-step

action is determined by a combination of model-based value, model-free value,

and a ‘repetition bias’. We follow Decker et al. (2016); Potter et al. (2017);

and Nussenbaum et al. (2020) in modelling separate weights associated with the

influence of model based value (βmb) and model-free value (βmf ), alongside a

parameter capturing biases to repeat the previous step one choice (p). We then

model the probability of choosing each possible action at the first step using a

softmax on the weighted contribution of these components:

P (ai|s1,t) = exp (βmf ∗ Qmf (s1,t, ai) + βmb ∗ Qmb(s1,t, ai) + p ∗ rep(ai))∑
a′ exp (βmf ∗ Qmf (s1,t, a′) + βmb ∗ Qmb(s1,t, a′) + p ∗ rep(a′))

(6.4)

At the second step, the model-free value is used to predict choice, and a separate

softmax temperature is fitted:

P (ai|s2,t) = exp (βstep−two ∗ Qmf (s2,t, ai))∑
a′ exp (βstep−two ∗ Qmf (s2,t, a′))

(6.5)

The final model had six free parameters including a first-step weight for model-

free value (βmf ), a first-step weight for model-based value (βmb), a first-step weight

for persistence (repeating the previous choice; p), a second-step softmax tempera-

ture for model-free value (βstep−two), learning rate (α) and eligibility parameter (λ).
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Figure 6.2: Two-step task. (a) Depiction of the task, where participants made two
sequential decisions between colours (step-one) followed by shapes (step-two), with the
aim of maximising wins. Arrows between step-one and step-two illustrate the common
transitions (bold arrow, .75 probability) and the rare transitions (narrow arrow, .25
probability). Arrows between step-two and the reward outcome illustrate the probability
of winning after selection of each shape. At any point in time, a particular shape (in this
example, the star) was associated with high probability of winning the reward. The high-
reward shape shifted every 32 trials. (b) Performance plotted by group. Performance
is quantified as the proportion of correct choices at step-one i.e. choosing the colour
which leads to the high reward set of shapes after a common transition. Error bars
depict s.e.m., dots show individual data points, line depicts chance performance. (c)
Average proportion of rewarded trials plotted by the trial number following a shift in
reward contingency. The rewarded shape changed every 32 trials. Colour depicts group,
confidence intervals depict s.e.m. (d) Step-two choice reaction times plotted for the three
groups, split by whether the transition experienced was common or rare (circle shows
common, star shows rare). Error bars depict s.e.m, and transparent lines show reaction
times for individual participants. Stars depict significance, corresponding to the fact that
in each group participants slowed down after experiencing a rare transition.
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Model Validation and Fitting

While the behavioural model described above has been used extensively in the

literature, this dataset was collected using an adapted version of the two-step task

which would be easier for patients with brain damage to learn, as used in similar

studies with patient populations (Castro-Rodrigues et al. 2022). In this version,

reward probabilities were stationary with abrupt shifts, rather than continuously

drifting. Since previous studies have shown that model-free behaviour can be

mistaken for model-based behaviour in environments with stationary probabilities

(Akam et al. 2015), it was important to validate the model within the experimental

paradigm to show that model-based behaviour could still be recovered by fitting the

reinforcement models. Full details of model validation are included in the appen-

dices, showing that all parameters including model-based weights are recoverable

in this version of the task (see model validation).

A Bayesian hierarchical modelling framework was used to fit the reinforcement

learning models to behaviour, allowing data pooling across participants to improve

individual parameter estimates. Full details of model priors and fitting procedure

are included in the supplementary materials. Models were coded in the Stan

modelling language (Carpenter et al. 2017), and fitted to each dataset using the

Cmdstanpy interface. Following previous studies (Decker et al. 2016; Potter et al.

2017), we did not include the first 9 choice trials in the analysis. Further details

about the model-fitting procedure is included in the appendices (see model fitting).

Lesion Group Comparisons

We began by investigating differences in performance and in sensitivity to the tran-

sition structure as a function of lesion. To test for differences in performance, we

compared accuracy at step-one. ANOVA was used since this metric of performance

was normally distributed. For transition structure sensitivity, we used the difference

in reaction time following a common versus rare transition. Since the differences

were not normally distributed, Kruskal-Wallis tests were used.
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Two metrics were used to test the hypothesis that model-based planning would

be lower in mPFC patients. Non-parametric one-sided Mann-Whitney U tests were

used because both metrics violated assumptions of normality. First, we tested

whether mPFC patients were less likely to modulate their stay-probabilities by

the transition structure (lower transition-outcome interaction from the analysis of

stay probabilities). Second, we formally quantified model-based planning from the

reinforcement learning model, and tested if mPFC patients had lower model-based

weights. In both cases we assessed the hypotheses that (a) mPFC patients had

reduced model-based metrics compared to lesion controls and (b) mPFC patients

had reduced model-based metrics compared to age-matched controls.

We had no other a priori hypotheses about parameters from the reinforcement

learning model. Exploratory analyses were performed to determine if there was

an effect of group on any of the reinforcement learning parameters, using Kruskal-

Wallis non-parametric tests since assumptions of normality were violated in each

case.

Test for model-based behaviour

Since model-based weights recovered in the reinforcement learning model low, we

performed a final analysis to determine if our data supported the use of model-

based strategies at all. We performed a model comparison of two hierarchical

RL models: one model containing all six parameters described in reinforcement

learning models, and one five parameter nested model which excluded just the

model-based beta weight (where the model-based weight is set to zero). The two

models were compared using leave-one-out cross-validation (LOO-CV), where out-

of-sample predictive accuracy is estimated using expected log predictive accuracy

across data points (expected log pointwise predictive density; elpd). To quantify

this, we used the ArviZ package (Kumar et al. 2019), which uses Pareto smoothed

importance sampling (PSIS) to implement LOO-CV (Vehtari et al. 2017).

127



6. Effects of mPFC lesions on the components of planning

6.2.4 Results

Medial PFC damage does not affect performance in the two-step task

We found mPFC lesions did not impair performance at the two-step task. All

groups in our study were sensitive to the general reward probabilities and tran-

sition structure of the task. In each group participants picked the correct colour

at step-one more frequently than chance (Fig.6.2b; one-sample two-sided t-test

comparing the mean proportion of correct step-one choices against 0.5; frontal

patients: t(29) = 4.44, p = 0.0001; lesion controls: t(18) = 3.23, p = 0.005; age-

matched controls: t(19) = 3.70, p = 0.002), showing a basic understanding of the

reward structure. However, lesion damage had no effect on performance (ANOVA

for effect of lesion group on step-one choice accuracy; F (2, 66) = 0.71, p = 0.495).

We also found all groups to be sensitive to the transition structure linking

step-one and step-two as indicated by their reaction times (Nussenbaum et al.

2020). In all groups, reaction times in step-two were slower following the more

surprising ‘rare’ transition compared to a ‘common’ transition (Wilcoxon signed-

rank of mean reaction times after rare versus common transitions; frontal patients:

Z = 4.68, n = 30, p < 0.001; lesion controls: Z = 3.22, n = 19, p = 0.001; age-

matched controls: Z = 3.47, n = 20, p = 0.0005). There was no difference between

lesion groups in sensitivities to the transition structure as shown in reaction times

(Fig.6.2d; Kruskal-Wallis comparing the effect of group on the difference in step-two

reaction time following common versus rare transitions: H(2) = 2.35, p = 0.309).

No difference in model-based strategies following mPFC damage

Next, we quantified whether mPFC lesions affected sensitivity to the task transition

structure shown in choices. A learner who uses a ‘model-free’ strategy will be

more likely to repeat their first step choice after being rewarded, regardless of

whether the transition between steps was common or rare (although see Akam

et al. 2015). However, a decision-maker who plans uses a model of the transition

structure will be more likely to repeat their first step choice after being rewarded

following a ‘common’ transition, but switch to the opposite choice when rewarded
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following a ‘rare’ transition. We found that mPFC lesions did not affect peoples’

model-based behavioural adjustments as measured through analyses of repetition

probabilities (Fig.6.3; outcome–transition interaction on stay probability: mPFC

< lesion control; n1 = 30, n2 = 19, U = 318.0, p = 0.754; mPFC < all controls;

n1 = 30, n2 = 20, U = 368.0, p = 0.912).

Finally, we fit reinforcement learning models to the data to formally quantify

the contribution of model-based and model-free reasoning, while also controlling for

other behavioural factors such as persistence (the tendency to repeat the previous

action), and learning rate (how quickly people update their behaviour). Medial pre-

frontal lesion patients did not show reduced model-based planning when formally

operationalized in a reinforcement learning model (Fig.6.4, top left; model-based

beta weight from RL model: mPFC < lesion control; n1=30, n2=19, U=394.0,

p=0.988; mPFC < healthy controls; n1 = 30, n2 = 20, U = 356.0, p = 0.868).

Our findings show that across a range of behavioural metrics, mPFC patients

neither had worse performance nor showed a reduction in model-based planning

in the two-step task.

No effect of lesion on learning in the two-step task

We reported tests for the a priori hypothesis that model-based planning would be

lower in mPFC patients, which we found was not the case. We had no other a

priori hypotheses about parameters from the reinforcement learning model. We

therefore performed exploratory analyses to determine if there was an effect of any

group using Kruskal-Wallis non-parametric tests since assumptions of normality

were violated in each case. None of the parameters from the RL model showed any

significant differences as a result of group (Fig.6.4; Kruskal-Wallis tests; model-

based weight: H(2) = 5.19, p = 0.075; model-free weight: H(2) = 0.60, p = 0.741;

step-two beta: H(2) = 0.640, p = 0.726; persistence bias: H(2) = 5.49, p = 0.065;

alpha: H(2) = 1.03, p = 0.597; lambda: H(2) = 0.08, p = 0.959).
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Figure 6.3: Analyses of stay probabilities. (a) Simulated choices from a model-free
agent (who ignores the transition structure between step-one and step-two), and a model-
based agent. The probability of repeating the same step-one choice (y-axis) is plotted
as a function of whether the previous trial was rewarded or unrewarded (x-axis). Shade
depicts whether the previous outcome had followed the common transition (dark) or
rare transition (light). A model-based agent will be more likely to repeat their step-one
choice if a rare transition led to reward, and less likely to repeat their step one-choice if a
common transition led to no reward. (b,c,d) Same analysis as (a) performed on empirical
data in the three patient groups. (e) Results from the stay-probability analysis where the
probability of staying is analysed depending on the type of transition and whether the
previous trial was rewarded. The outcome-transition interaction beta weights are plotted
as a function of group, where higher beta values indicate more model-based modulation
of behaviour. Error bars depict s.e.m, dots show individual data points, line depicts no
effect.
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Figure 6.4: Parameters from the reinforcement learning model, plotted by group (mPFC
lesion patients, lesion controls, healthy controls). No parameters show significant effect
of group.

Negligible model-based behaviour across older participants

All participants in our task were older than standard cohorts, which has been

shown to be related to reduced model-based reasoning (Eppinger et al. 2013). In

addition, previous studies have found that the use of model-based strategy is highly

dependent on a range of experimental factors such as task framing and instructions

(Feher da Silva and Hare 2020; Castro-Rodrigues et al. 2022). When plotting

stay probabilities in our experimental cohort of older participants, all groups more

closely resembled model-free planners than model-based planners (Fig.6.3a-d). To

determine whether participants were using model-based strategies at all, we directly

compared the hierarchical reinforcement learning models with and without this

parameter. The full (6-parameter) model containing the model-based beta weight
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was no better than the 5-parameter model without the model-based component

(elpd_loo with model-based component: -20852.76; elpd_loo without model-based

component: -20852.56). In other words, we did not find evidence that participants

were generally using model-based value to guide behaviour in this study, despite

showing sensitivity to the transition structure through reaction times.

6.2.5 Interim Discussion

We did not find any effect of mPFC lesions on any aspect of behaviour in the

two-step task. While this is consistent with the theory that mPFC lesions affect

planning more in complex state spaces, this study comes with a crucial caveat.

Importantly, use of model-based strategies were negligible across all groups in our

cohort. Our findings are consistent with previous studies showing reduced use of

model-based strategies in older adults (Eppinger et al. 2013). Previous papers have

also reported drastically improved model-based reasoning after receiving explicit

instructions explaining the structure of the task, compared to no instructions at all

(Feher da Silva and Hare 2020; Castro-Rodrigues et al. 2022). Participants in our

task received a level of instruction somewhere in the middle of these two extremes

(Fig.D.1), so it is therefore possible participants would have used more model-

based strategies if more explicit instruction were given. In any case, the general

lack of model-based planning in this study limits the conclusions we can draw

about the relationship between model-based planning and mPFC lesions within

the two-step setting.

Despite these limitations to interpreting the results, it is important to note that

mPFC lesion patients performed as well as lesion controls and age-matched controls

in this probabilistic decision-making task. Overall, all groups performed well above

chance, and showed sensitivity to the task structure through reaction times. They

were also able to update their choices after a shift in the rewarding outcome, which

has a structure analogous to reversal learning. The fact that mPFC patients were

no worse at any of these elements supports previous findings that mPFC damage

does not affect learning of contingent relations between actions and outcomes or
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“credit assignment” (Noonan et al. 2017). In addition, it supports the idea that

decisions between binary choices based on a single attribute are not affected by

mPFC lesions (Pelletier and Fellows 2019).

6.3 Experiment 2: Four-in-a-row

Compared to the two-step task, the four-in-a-row paradigm provides a substantially

more complex setting to investigate planning. Since full simulation of the state

space is computationally impossible, planning requires selecting possible futures

to explore, and using heuristics to evaluate positions. This naturalistic setting

therefore provides more opportunity to capture the planning deficits lesion pa-

tients show in real life, as well as provide insights into the underlying cognitive

components causing these deficits.

6.3.1 Participants

For the four-in-a-row study, we collected data from a total of eighteen lesion patients

(mean age=59, 9 females) and thirty age-matched healthy control participants

(mean age=58, 16 females). The patient population was recruited from a database

of individuals who had previously visited the John Radcliffe Hospital and consented

to be contacted for research studies. As previously described for the two-step

study, the Harvard-Oxford cortical structural atlas mask of ventromedial prefrontal

cortex was used to a priori assign patients to the mPFC group or lesion control

group (mPFC lesion group: N=10; Fig.6.1c, left; two-step lesion control group:

N=8; Fig.6.1c, right).

6.3.2 Experimental methods

All participants played ‘Four-in-a-row’, which is a computer-based game where

the player’s aim is to place four pieces of their own colour in a line (vertically,

horizontally or diagonally) before the computer opponent (Fig.6.5a). Participants

alternated turns with the computer opponent to place pieces of their colour (black
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or white) on an empty space in a four-by-nine grid. A board of this size has

approximately 1.2 x 1016 non-terminal states. Each game could terminate in a win

(participant gets four pieces in a row), loss (computer opponent gets four pieces

in a row), or draw (no one gets four in a row before the grid is full). Participants

alternated between playing black pieces, and playing white pieces, where the first

move of each game was always black.

The task was programmed in JavaScript and participants completed the game in

a web browser (hosted on Amazon Web Services). For the patients, the researcher

remained on the telephone throughout the session to help with any technical

difficulties with the task, but all instructions and training were standardised and

completed online. All participants received the same training which involved

computer-based instructions, two practice games, and five comprehension questions.

After training, participants completed forty games total, starting at an easy level

and advancing to more challenging opponents based on a staircase algorithm. The

healthy control participants matched for age were recruited from Prolific.co, and

received the same training and study procedure with the only difference that the

researcher was not present on the telephone.

The set of AI opponents comprised of 200 difficulty levels, previously developed

by Opheusden and colleagues (van Opheusden et al. 2023). Participants were

matched to opponents of an appropriate playing strength using a staircase proce-

dure. The 200 difficulty levels were divided into five categories of playing strength

(with 40 agents per category). For the two practice games, the level was initially

set to 1 (easiest possible). At the beginning of the study, the first opponent was

randomly drawn from category 2 (i.e. levels 40-79). After each game, the opponent

was updated based on the outcome: after a loss, a new opponent was drawn from

the category below; after 1 win or a draw, a new opponent was drawn from the same

category, and after 2 wins a new opponent was drawn from the category above.
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6.3.3 Four-in-a-row statistical analyses

Task performance

We assessed task performance through estimations of playing strength using the Elo

System (Elo 1978; van Opheusden et al. 2023). Each player is given a relative score

based on their history of wins, losses and draws against the same pool of opponents

(computer levels). To quantify elo ratings, we used the Bayeselo algorithm (ht

tps://www.remi-coulom.fr/Bayesian-Elo/), originally developed for rating

chess players but which has previously been used to rate performance in four-in-

a-row (van Opheusden et al. 2023). Each category (1-5) was treated as a single

‘player’. This measure of playing strength does not factor in differences in cognitive

strategies, but rather derives a ranking across the total set of players.

Planning Model

To formally quantify differences between groups in the cognitive components of

planning, we used the model developed to accompany Four-in-a-row by in Van

Opheusden and colleagues. The model comprises a heuristic evaluation function

and a best-first search algorithm. Given the size of the state space, it is impossible

to plan across all possible futures in this task. For this reason, the model assumes

agents search the space efficiently. This rests on two assumptions, namely that

simple features are used to estimate the value of moves, and that the most promis-

ing moves are explored first during planning. The components of the cognitive

model and reliability of parameters have been extensively validated in a previous

paper (van Opheusden et al. 2023). Below, we outline the main parts of the

planning model.

Heuristic value function The heuristic value function determines the value

of each board state V (s) according to a combination of heuristic ‘features’. The

algorithm posits 5 evaluative features: connected 2-in-a-row (i.e. two consecutive

pieces), un-connected 2-in-a-row (i.e. two non-consecutive pieces which could form

the basis of a 4-in-a-row win), 3-in-a-row, 4-in-a-row, and proximity to the board
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center. It is assumed that people approximate the value of the board through a

weighted sum of the value of these features. For each participant, individual weights

are associated with each feature. In addition, features are scaled differently (with

a scaling constant C) depending on whether their colour belongs to the current

‘active’ player, or the other ‘passive’ player during the simulated move, capturing

the fact that features are more valuable if they belong to the player whose current

move it is. The final value function is as follows:

V (s) = wcentreVcentre + cblack

∑
i∈F

wifi(s, black) − cwhite

∑
i∈F

wifi(s, white) + N (0, 1)

(6.6)

Where cblack = C and cwhite = 1 whenever black is to move in state s, and cblack

= 1 and cwhite = C whenever white is to move in state s. The last term N(0, 1)

adds Gaussian noise with mean zero and unit variance.

Tree-search algorithm Guided by the value function, the tree-search algorithm

constructs a partial decision-tree using best-first search (Dechter and Pearl 1985).

On each iteration, the value function determines which position to explore, resulting

from the sequence if both players choose their highest-value moves in the current

tree. All legal moves from the selected position are evaluated, and values are back-

propagated to predecessor nodes up to the root of the tree using minimax rule.

Moves which are lower than the best move minus a ‘threshold’ (θ) are pruned.

This reflects the fact that people cannot do an exhaustive search over the state

space, and aligns with empirical evidence that people ‘prune’ branches with initial

low values (Huys et al. 2012). Finally, at the end of each iteration, there is a

probability of the search being terminated with a stopping probability parameter.

Sources of noise In addition to the parameters related to the value function

and tree search, there are two additional parameters related to sources of noise.

‘Feature drop’ models selective attention by capturing the probability of missing a

feature on a particular trial (a particular feature is ‘dropped’ from V (s) at all points
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in the tree). Finally, lapse rate parameter captures the probability of choosing a

random move on any particular trial.

Summary parameters Following the original paper developing this model (van

Opheusden et al. 2023), we focus our analyses on three final summary parameters:

depth, heuristic quality, and feature drop rate. These summary parameters have

better reliability and test-retest stability than the lower-level sub-parameters (van

Opheusden et al. 2023). To calculate these summary parameters, each individ-

ual’s set of sub-parameters are used to simulate moves across 5482 unique states.

This simulation is repeated 10 times, to minimise variability in noise. The final

parameters are then calculated in the following way:

1. Planning Depth. This parameter captures the average length of the de-

cision tree across simulated searches (i.e. how far a participant tends to

plan into the future). To derive depth, sub-parameters for each participant

are used to simulate moves by building a decision tree. Planning depth is

formally quantified as the length of the forwardly simulated sequence (depth

of decision tree), averaged across simulations.

2. Heuristic Quality. This parameter captures the difference between sub-

jective weights for the five heuristic features, and the optimal weights. The

subjective value is calculated across the 5482 states using each participants

weighted combination of features. The optimal state values from Van Opheus-

den et al. 2023 were calculated by running the model with no noise and

no pruning until convergence on the state value. Heuristic quality is the

correlation between the subjective state value (the participants weighted

combination of features), and the objective optimal value.

3. Feature Drop Rate. This parameter directly corresponds to an estimated

sub-parameter in the model, capturing the probability that a participant

overlooks a feature instance on the board. When a feature is dropped,

its weight is temporarily set to zero in a particular move, mimicking an
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attentional lapse. See appendices for an illustration of how the feature

drop rate parameter captures behaviour, specifically when an opportunity for

winning the game is over-looked, or a three-in-a-row threat from an opponent

is missed (Fig. D.4).

Model fitting The pipeline for fitting the four-in-a-row model is computationally

expensive (fitting one participant’s data for a single model requires approximately

1014 floating-point operations). Model fitting was carried out by our collaborators

at NYU (Bas Van Opheusden), on the NYU high-performance cluster (Intel Xeon

E5-2690v2 CPUs 3.0 GHz) with a parallel implementation of inverse binomial

sampling, which uses 20 cores.

Comparisons of behaviour across groups

Across all comparisons of group behaviour, non-parametric tests were used be-

cause variables violated assumptions of normality. First, we established whether

the three groups differed in performance. For this initial test, we used Kruskal-

Wallis to determine if Elo ratings differed as a function of group (mPFC group,

lesion controls, healthy controls). We followed this result with two-sided Mann

Whitney U tests. The critical test was whether individuals with mPFC lesions

performed worse than other individuals with lesion damage (mPFC patients versus

LC). Following this, we verified that mPFC patients differed to healthy controls

(mPFC patients versus HC).

Since larger lesions are often associated with lower performance(Karnath et al.

2018), as an additional control, we verified that performance was truly related to

the location of damage rather than the size of the lesion. To do this, we predicted

Elo ratings using the number of voxels damaged within the mPFC, as well as the

number of voxels damaged in total:

Elo = β0 + β1damagemP F Cβ2damagetotal (6.7)
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Where damagemP F C refers to the number of voxels damaged within the ven-

tromedial prefrontal mask, and damagetotal refers to the total number of voxels

damaged across the brain.

Once it was established that mPFC lesion patients had a performance deficit,

we used one-sided Mann-Whitney tests to investigate the three different hypotheses,

namely that mPFC lesion patients planned at lower depth, were more likely to drop

valuable features, or had lower heuristic quality. Again, we used the critical test to

ask whether there was an effect of mPFC lesion within the lesion population (mPFC

patients versus LC), following up to verify that the difference existed compared to

healthy controls (mPFC group versus HC).

6.3.4 Results

Medial PFC damage impairs planning in Four-in-a-row

Medial PFC lesion patients had lower playing scores compared to both control

lesion patients, and age-matched controls (Fig.6.5b). To quantify playing strength,

we used the Bayeselo algorithm, originally developed for rating chess players but

which has previously been used to rate performance in four-in-a-row (van Opheus-

den et al. 2023). A Kruskal-Wallis test indicated there was a difference in Elo

ratings between the three groups (H(2) = 7.20, p = 0.027). Lesion patients with

mPFC damage had lower Elo ratings compared to patients with damage elsewhere

(mPFC Elo Median=–66.0; patient control Elo Median=33.5; difference in ratings:

Mann Whitney U = 14, p = 0.021), and compared to a healthy age-matched

population (median age-matched control Elo Median=27.5; difference in ratings:

Mann Whitney U = 71.0, p = 0.014), while the difference between the control

lesion patients and the healthy age-matched population was not significant (Mann

Whitney U = 127.0, p = 0.816).

To eliminate the possibility that our results were driven by differences in lesion

size, we controlled for total lesion volume in a regression analysis. Within the

patient population we found lower Elo scores were predicted by larger vmPFC

lesions (β = −0.08, p = 0.033) but not by larger lesions in general (β = 0.00,
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p = 0.664). These findings suggest that damage to the vmPFC is predictive of

lower performance in this task.

Planning deficits following mPFC damage are linked to attentional lapses

What is causing the performance deficit shown by mPFC lesion patients in Four-in-

a-row? The behavioural model of the task formally characterized three separable

cognitive components involved in the game (van Opheusden et al. 2023). Better

performance in the task is associated with planning further into the future (higher

‘depth’), better evaluation of the board heuristics (higher ‘heuristic quality’) and a

lower tendency to miss valuable feature on any trial (lower ‘feature drop rate’). We

therefore tested whether any of these trends were true for the mPFC group. The full

description of these parameters can be found in the section summary parameters.

We found that mPFC patients were more likely to miss valuable features than

lesion controls (Fig.6.5e; higher feature drop rate: one-sided Mann-Whitney; n1 =

10, n2 = 8, U = 72.0, p = 0.002), and compared to healthy controls (one-sided

Mann-Whitney; n1 = 10, n2 = 30, U = 246.0, p = 0.001). We also found that

mPFC lesion patients planned to a lower depth than lesion controls (Fig.6.5f; lower

depth: one-sided Mann-Whitney; n1 = 10, n2 = 8, U = 15.0, p = 0.013), but this

did not survive comparison with age-matched controls (one-sided Mann-Whitney;

n1 = 10, n2 = 30, U = 103.0, p = 0.073). Medial PFC patients did not demonstrate

a lower ability to use good heuristics compared to either lesion controls or healthy

controls (Fig.6.5g; patient controls: U = 23.0, p = 0.072; age-matched controls:

U = 104.0, p = 0.078).

While we did not analyse the model sub-parameters in general (because these

are less reliable than the summary parameters (van Opheusden et al. 2023)), we ex-

amined one relevant sub-parameter which controls for an alternative form of ‘noise’.

The ‘lapse rate’ parameter captures the probability of making a random move on

any trial. While lesion patients generally had higher lapse rate than healthy age-

matched controls, there was no difference as a function of lesion location in mPFC

(analysis included in appendices; see Fig.D.3). This suggests that mPFC patients
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Figure 6.5: Main results from the Four-in-a-row study. (a) Depiction of the task,
where participants aimed to place four pieces of their colour in a row. Arrow depicts
example winning move (reprinted with permission from van Opheusden et al. (2023)).
(b) Elo ratings (a metric of performance, or playing strength) as a function of group.
Error bars show s.e.m., dots show individual participant ratings. Stars show statistical
significance, where mPFC lesion patients perform worse than both lesion controls and
age-matched controls. (c) The computational model consists of a heuristic value function
(for evaluating states) and a tree-search algorithm (for simulating future moves). The
value function corresponds to a linear combination of heuristic features critical for playing
the game. Coloured lines depict example features, where purple shows connected two-in-
a-row, blue shows un-connected two-in-a-row, and orange shows three-in-a-row. Within
the model, heuristic quality refers to how closely an individuals weights for each feature
match the optimal weights. Feature drop rate refers to the probability of over-looking
a feature on the map, on any trial. (d) The tree-search algorithm constructs a partial
decision-tree using best-first search (see section Planning Model for full description).
Depth refers to the average length of forward search, illustrated in the example with the
red trajectory. (e,f,g) Summary parameters from the planning model, plotted by group.
Error bars show s.e.m., dots depict individual participant parameter estimates. Stars
depict result of testing the three hypotheses, namely that mPFC lesions are associated
with higher feature drop rate, lower depth, and lower heuristic quality than the two
control groups.
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are selectively more likely to have a lapse in attention which means they miss a

particular valuable feature, rather than a tendency to respond more randomly.

Differences in feature drop rate cannot be explained by failures to block
opponents

Medial PFC patients in our study are more likely to miss valuable features while

planning. This is consistent with the theory that mPFC is critical for orienting

attention to the relevant features of the problem. However, there is an alternative

explanation dependent on the type of features dropped. The feature drop pa-

rameter does not differentiate between whether a dropped feature corresponds to a

high value feature for the opponent (thus lower value for the player) or a high value

feature for the player (see Fig.D.4 for illustration of these two cases). In other words,

patients could be specifically missing features related to the opponent winning,

compared to features signifying their own win. Since mPFC lesions have also been

linked to deficits in theory of mind, this is a critical alternative explanation to rule

out. To investigate this, we performed a simple analysis independent of the model.

Non model-based analyses of wins and losses are difficult in four-in-a-row be-

cause opponent difficulty changes as a function of the players’ performances, accord-

ing to a staircase algorithm. Moreover, opponent difficulty is a complex construct

that does not map neatly onto any interpretable strategies, but rather was derived

through iteratively ranking AI opponents using Elo ratings (van Opheusden et al.

2023). However, we reasoned that if participants were specifically impaired at

representing opponent theory of mind, this should be apparent in how frequently

they make moves to block an opponent. Failures to block an opponent directly

lead to an opponent win, and are therefore roughly balanced across the experiment

as a result of the staircase algorithm. However successful blocking moves provide

a more indirect metric of participants’ ability to spot opponent opportunities, and

therefore provide a cleaner metric of opponent tracking in this game.

We counted the number of times each participant successfully blocked an oppo-

nent’s chance of winning (blocking an opponent 3-in-a-row) across the forty games.
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Figure 6.6: Four-in-a-row opponent blocking moves. Total number of opponent blocks
across the study, plotted by patient group (mPFC lesion, lesion control, healthy control).
Opponent blocks are events where the player puts a tile in the fourth remaining position
next to an opponent three-in-a-row, terminating the opponents chance of winning the
game with four pieces in a row. The fact that mPFC patients were not worse at blocking
opponent wins suggests their attentional lapses are more pervasive rather than being
explained by a specific tendency to neglect opponent moves, or a deficit in theory of
mind.

We found no difference between the three groups, supporting the idea that patients

are not specifically failing to block the opponent (Fig.6.6, one-way Anova on total

blocks by group: F (2, 45) = 1.00, p = 0.373). This suggests that the tendency to

miss relevant information is more pervasive, and cannot be explained by a specific

deficit in failures to model the opponent’s strategy.

6.3.5 Interim Discussion

We found mPFC patients were impaired at planning in four-in-a-row. We investi-

gated three possible hypotheses for why planning was impaired: deficits simulating

the future, poor evaluation of features generally, or the tendency to overlook

valuable features when planning. We found patients were far more likely to drop

valuable features than both lesion controls and age-matched healthy controls. We

also found that mPFC patients planned to lower depth than lesion controls, but

this did not survive comparison with age-matched healthy controls. We also
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investigated the possibility that mPFC patients were specifically missing features

which signal an opponent’s win, consistent with deficits in theory of mind. We

found mPFC patients blocked opponent wins as many times as the control groups,

suggesting the attentional deficit is more general than a failure to miss opponent

moves. In other words, these analyses show mPFC patients are more likely to

miss valuable features when deciding where to place their tile, despite showing

no systematic disturbances in board evaluation (heuristic quality), or consistently

planning less far into the future (depth). This is consistent with the idea that

goal-directed attention is disturbed following lesions to vmPFC, which is the case

for all our mPFC patients.

6.4 General Discussion

Classical studies of frontal lesion patients have emphasised the need for tasks that

are sufficiently naturalistic to elicit complex behaviours, yet can provide specificity

about cognitive functions. One such complex behaviour is planning, where mPFC

patients show disturbances across a range of settings. We investigated how mPFC

damage affects planning capacities using two paradigms from computational cog-

nitive science: the relatively simple two-step task and substantially more complex

four-in-a-row task. Four-in-a-row provides a computational framework designed to

disentangle the contributions of different cognitive components to complex planning

(van Opheusden et al. 2023).

Patients with damage to mPFC demonstrated impaired performance in four-in-

a-row, but not the two-step task, compared to lesion control patients and age-

matched healthy controls. We investigated how the four-in-a-row impairment

related to the cognitive components identified by the model, through three pos-

sibilities: that mPFC damage leads to shorter depth of planning, worse heuristic

evaluation overall, or a higher probability of missing relevant features in decisions.

We found strong evidence for the third hypothesis, namely that mPFC patients

were more likely to overlook critical relevant information on the board.
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Four-in-a-row characterizes planning in a vast state space across multiple steps,

providing a more ecological assessment of complex planning than previous labora-

tory planning tasks (van Opheusden et al. 2023; Ma et al. 2022). In contrast, the

‘two-step’ task consists of a maximum horizon of two steps, with only two options

presented at each step. Across a large sample, we found that mPFC patients showed

no behavioural differences in the two-step task compared to controls. These results

are consistent with the idea that mPFC damage affects planning more in complex

state spaces. However, our interpretation is limited by the caveat that no groups

demonstrated strong model-based planning in our two-step study. This is likely to

be related to the age of the population, where older cohorts generally show lower

model-based planning (Eppinger et al. 2013).

In the four-in-a-row study, mPFC patients were not systematically worse at

identifying what constituted a good move than controls (‘heuristic quality’). This

metric captures the difference between each participant’s value function (how they

weigh up the heuristic features on the board), and the optimal value function. This

finding suggests mPFC patients showed no systematic differences in identifying the

kinds of moves which would help them to win (for example, completing a three-

in-a-row). Instead, they had a higher probability on each trial of missing relevant

information (‘feature drop’).

Why were mPFC patients more likely to miss valuable features when planning

in four-in-a-row? One possibility is that these missed features reflect lapses in

orienting attention to goal relevant information. In complex environments with

myriad options available, selective attention plays a critical role in narrowing

down the dimensionality of the task (Niv 2019; Leong et al. 2017). Damage to

mPFC has been shown to selectively impair decision-making in multi-option choice

settings where irrelevant information is distracting, but not in simple binary choice

settings (Noonan et al. 2017; Vaidya et al. 2018). This idea is also consistent

with previous studies showing mPFC damage impairs the allocation of attention to

reward-predictive features of the environment (Vaidya and Fellows 2015b), while
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activity in mPFC predicts orientation of attention to current goals in healthy

individuals (Günseli and Aly 2020).

While our results are consistent with the possibility that task-relevant features

are only dropped in visual attention (i.e. missed opportunities on the board), it is

likely this deficit in selecting relevant information generalises outside of the visual

context. For example, selection of task-relevant variables may also be impaired

within memory or within simulation of future states. Our current paradigm cannot

distinguish between failures to select in visual attention and failures to select

within the simulation. However, mPFC is likely to be involved in sustaining key

contextual variables which also guide internal computations (Wilson et al. 2014). A

critical idea is that mPFC could represent a ‘cognitive map’ of current task-relevant

information for guiding behaviour; whether that behaviour depends on selection in

visual feature space, selection among model-based simulations, or selection within

memory (Behrens et al. 2018; Wilson et al. 2014).

As well as showing a tendency to miss valuable features, we found that mPFC

patients planned to lower depth than lesion controls, but not healthy controls. It

is possible that with more power from a larger sample we would see lower depth in

planning in mPFC patients compared to healthy controls too. Problems simulating

the future would lead to suboptimal planning and has been one of the proposed

explanations for planning deficits in mPFC patients (Bertossi et al. 2016a; Bertossi

et al. 2016b; Bertossi et al. 2017; Fellows and Farah 2005).

One possibility is that mPFC is not directly involved in simulating future

trajectories, but rather supports the goal-directed recruitment of these simulations

taking place in other areas such as hippocampus. Consistent with this idea, dam-

age to hippocampus has been shown to impair model-based planning in rodents

(Miller et al. 2017) and most recently in humans (Vikbladh et al. 2019). For

example, Vikbladh and colleagues demonstrated that patients with damage to the

hippocampus following epilepsy treatment showed lower model-based planning in

the two-step task compared to controls. This deficit was proportional to the extent

of their hippocampal damage. Greater functional coupling between hippocampus
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and mPFC has also been shown to predict better inferences in healthy individ-

uals (Zeithamova et al. 2012). It is notable that many tasks involving model-

based inferences find activity in both mPFC and hippocampus (Barron et al.

2013; Barron et al. 2020; Park et al. 2021). While mPFC may be required to

modulate processing through representation of the current state, other areas may

perform more specific computations. For example, mPFC could coordinate context-

dependent computations in other areas such as simulation or memory recall in

the hippocampus (Zeithamova et al. 2012), or value learning in the basal ganglia

(Blanco-Pozo et al. 2024).

6.5 Contributions

The two-step task dataset was collected by Matthias Raemaekers, Rowan Board

and Patricia Lockwood. Harry Ward and myself collected the four-in-a-row dataset.

Bas Van Opheusen and Xinlei Lin fit the computational planning model to the

four-in-a-row data set. Jan Grohn, Sanjay Manohar, and Weiji Ma contributed

to supervising the analyses included in this chapter. Jill O’Reilly gave feedback

on the writing and interpretation.
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General Discussion

7.1 Goals and state representations

In chapter 1, I described a tension in the way that different disciplines have char-

acterised goals. Psychologists have traditionally defined goal-directed behaviour in

terms of its flexibility. To be pursuing a goal, rather than responding habitually, is

to remain sensitive to the value of the goal and the contingencies in the environment.

Yet philosophers and behavioural economists characterise goals as being inflexible:

people fail to abandon goals in light of changing information. One response to this

conundrum is to consider what kinds of information animals remain flexible to

during goal pursuit.

In this thesis I have proposed that goal pursuit involves constraining the state

representation to prioritize goal-relevant information in attention. This specifically

predicts that animals will show reduced flexibility in response to sources of value

which are irrelevant for the currently pursued goal. In chapter 3, I presented

evidence that over the course of goal pursuit, people lost sensitivity to the value of

alternative goals both in reaction times and choices. Consistent with this, selective

attention was increasingly captured by the current goal, even outside the decision

setting. These findings are consistent with the idea that goal pursuit has a global
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effect on how information is processed which enables prioritization of current goals

at the expensive of goal irrelevant information.

In classic devaluation paradigms or for Tolman’s rats running through the maze,

competing goals are not present. These scenarios therefore do not provide oppor-

tunities for observing how goal pursuit could affect flexibility in response to the

value of alternative goals. However, an interesting recent study presented rodents

with choices between two competing homeostatic goals (Richman et al. 2023).

Rodents deprived of both food and water were presented with free choices

between competing needs on every trial (Richman et al. 2023). A good choice

strategy would be to select the option which relieved the most urgent need at every

trial, as predicted by accounts of homeostatic reinforcement learning (Keramati and

Gutkin 2014). However, instead, Richman and colleagues found that behaviour was

best characterised by persistent bouts of trials where a particular type of good was

chosen repeatedly, before the animal switched over to addressing the other need.

In other words, while behaviour was sensitive to the animal’s underlying needs for

the two homeostatic goals, it was not defined by them. Rather, behaviour was

structured by periods of sustained pursuit, where the currently pursued goal could

be decoded in neural activity between trials. These underlying goals, sustained

across time, seem to interfere with the ‘optimality’ of the animal’s behaviour by

delaying the choice of more urgent needs.

7.2 Commitment biases and optimality

Why would people – and potentially other animals – show these suboptimal be-

haviours to over-persist with current goals? In chapter 3 I found that most healthy

people over-persist with goals, while in chapter 5, a group of individuals who show

lower goal persistence demonstrated a behavioural advantage. This chimes with

classic behavioural economic accounts which consider ‘sunk cost biases’ to be an

irrational weighting of decision variables (Arkes and Blumer 1985). However, there

are various reasons why strong commitment to current goals might be beneficial in
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ecological settings. One reason could be that continual deliberation between possi-

ble goals is expensive, and resources are better allocated to achieving chosen goals,

as an example of ‘resource rational’ decision making (Gershman et al. 2015; Lee

and Daunizeau 2021). Another reason could be that in natural environments where

reward is uncertain or estimates are noisy, having a fixed bias to favour continuation

with the current goal allows for better outcomes overall (Johnson et al. 2013).

If commitment to goals can be more ‘rational’ in some settings than others,

an interesting question is whether people are capable of adjusting their levels of

commitment to reflect this. For example, ‘resource rational’ accounts would suggest

that commitment biases should be reduced if deliberation is inexpensive or where

fewer options are present. We might also predict that when people have more

confidence in their value estimates or more certainty about the future, commitment

to a selected goal is weaker.

This approach has proved to be informative for understanding other sources

of individual variability in cognitive biases including preferences for risk or delay

discounting. For example, both people and animals foraging in ecological environ-

ments flexibly adapt their preferences for risk in light of relevant variables such

as their own energy or resource level (Caraco 1981; McNamara and Houston 1992;

Kolling et al. 2012). Another example is the finding that children adjust their

willingness to wait for better future rewards (delay discounting) depending on

how reliable they believe the environment to be (Kidd et al. 2013). A different

perspective on these cognitive biases has assumed stability within individuals,

but emphasised how they are shaped during development by environmental and

cultural factors such as socioeconomic uncertainty (Belsky et al. 1991; Griskevicius

et al. 2011; Amir et al. 2018). Future studies could examine the flexibility of goal

commitment biases in the context of relevant variables such as the predictability

of the environment or the cost of deliberation.
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7.3 VmPFC and maintaining goals

In chapters 4 and 5, I presented various lines of evidence identifying vmPFC

with goal commitment. First, vmPFC carries sustained contextual information

about current goals which persists between trials. Second, baseline activity predicts

individual differences in commitment and attention to the current goal. Finally,

vmPFC damage reduces goal commitment, suggesting it is causally involved in

maintaining persistence with the current goal.

How exactly do we explain the role of vmPFC in supporting current goals?

After choosing to pursue a goal, subsequent decisions must be guided by goal-

relevant variables. As discussed in chapter 2, vmPFC supports context-dependent

behaviour across many settings: inferring the variables which are relevant for

guiding behaviour given the current state of the world (Hampton et al. 2006;

Wilson et al. 2014; Schuck et al. 2016; Mante et al. 2013; Castegnetti et al.

2021; Frömer et al. 2019). I have argued that analogies can be drawn between

vmPFC’s role in guiding behaviour when the experimenter manipulates the current

context, and when the subject has chosen their own context by deciding to pursue

a particular goal.

How could vmPFC orchestrate context-dependent computation across the brain?

Medial PFC activity has been shown to modulate dopaminergic prediction errors in

light of the current state (Starkweather et al. 2018). Taking insight from different

artificial neural network architectures, Blanco-Pozo and colleagues modelled these

dynamics using a recurrent neural network where information about the current

context was continually fed back into the network and thus sustained across time

(Blanco-Pozo et al. 2024). In contrast, the basal ganglia was modelled as a feed-

forward network where the input was partly defined by the context signal from

PFC. In other words, within this model recurrent medial PFC dynamics influence

processing in other areas through a sustained representation of the current state.

This is consistent with many studies showing that mPFC activity shows these
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sustained representations of contextual variables across decisions, which have an

influence on behaviour (Abitbol et al. 2015; Mehta et al. 2019; Bari et al. 2019).

An interesting line of investigation for future studies relates to how wider neural

processing adapts to the context of current goals. For example, dopamine responds

to reward proximity as well as reward value (Howe et al. 2013; Hamid et al. 2016b;

Collins et al. 2016), and some have argued that prolonged dopamine signalling could

sustain motivation towards goal completion by invigourating behaviour as goals are

approached (Howe et al. 2013; Berke 2018). It remains controversial and unclear

how these ‘ramping’ to goal signals relate to traditional theories of dopamine in

reward learning (Guru et al. 2020). However one question concerns how these

proposed goal tracking signals respond to interference from sources of value which

are irrelevant for the current goal (for example if alternative competing goals are

presented during goal pursuit).

7.4 Dorsal ACC and re-deliberation

What mechanisms support re-deliberation of goals? In chapter 4, a network of

regions - including dACC and dlPFC - were more active when goals were abandoned

and when the value of abandoning was higher. This is consistent with many studies

implicating these areas in decisions to abandon a behavioural strategy (Kaiser et al.

2021; Trudel et al. 2021), or go and explore other options (Tervo et al. 2021).

However the precise contribution of these regions, and dACC in particular, is still

debated. One school of thought has proposed the role of this region in exerting

cognitive effort and allocating cognitive control (Shenhav et al. 2013). For example,

dACC activity often correlates with reaction times (including in our task) and

difficulty. Another school of thought has proposed dACC to be at the top of a

decision hierarchy in selecting and motivating extended behaviours (Holroyd and

Yeung 2012). A related theory has emphasised role of dACC in making particular

kinds of longer-term decisions to switch between states or behavioural strategies for

which decisions about timing become critical (Kolling and O’Reilly 2018). While

152



7. General Discussion

our task tends to favour these latter interpretations, it remains an interesting

challenge how to reconcile these different perspectives.

One recent proposal building considers a role for dACC in tracking metacog-

nitive variables, for example about the value of deliberation itself (Clairis and

Pessiglione 2022). This builds on a framework which considers different levels of

evaluation guiding behaviour (and thus reflected in neural activity): an automatic

valuation which provides initial input to a meta-cognitive decision about whether

to evaluate further; followed by a slower more deliberate valuation which continues

until a confidence threshold is met (Lee and Daunizeau 2021). This provides a very

different framework for considering the results of our study. Rather than reflecting

the value of abandonment persay, could it be that dACC is actually representing

the value of re-consideration – the metacognitive value associated with opening

up goal deliberation once again?

This account is consistent with the idea of goals as ‘defaults’ – that is, options

which will continue to guide choice unless further deliberation is triggered (Lopez-

Persem et al. 2016). It also chimes closely with the philosopher’s notion of inten-

tions which I introduced in the very first chapter: action-guiding mental states

which are “stable” meaning they will persist over time unless explicitly revised

(Bratman 1987). To determine whether dACC is reflecting the value of goal re-

selection or the general cost of deliberation within the setting of goal pursuit

would require a different paradigm. Specifically, we would need to introduce a

greater variety of decisions within the task. For example, harder decisions about

how to implement chosen goals which do not affect the value of the goal itself

may elicit higher dACC activity in the meta-cognitive account, but not in the

state switching account. While some studies have already focussed on the role of

dACC in hierarchical decision-making tasks (Ribas-Fernandes et al. 2011; Ribas-

Fernandes et al. 2019), further studies could investigate the extent of this distinction

between ‘goal selection’ and ‘goal implementation’ (OReilly 2020). Evidence that

this distinction has real biological relevance in terms of mapping onto neural

architectures has been found elsewhere, for example in the discovery of different
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cell types in superior colliculus supporting orientation during prey selection versus

prey pursuit (Hoy et al. 2019).

7.5 Planning and medial PFC

Pursuing goals requires planning how to get there. In complex environments,

this is a composite process resting on the capacities to simulate transitions, use

good heuristics to make efficient choices, and select relevant cues among large

quantities of information. The results from chapter 6 suggest this third element

causes particular problems for medial prefrontal lesion patients in planning settings.

Building on the earlier ideas of this thesis, regions which play a role in guiding

attention in light of current goals are likely to be critical in complex environments

where subjects are faced with numerous competing options. This is the other side

of the coin to the paradox of goal commitment: selecting goal-relevant information

will reduce flexibility to good alternative goals, but may be critical for pursuing

chosen goals in busy environments with overwhelming amounts of information

to select from.

The exact contributions of medial PFC to model-based planning remain an

ongoing topic of research. How does mPFC interact with hippocampal areas

during planning, and do their respective roles change over the course of learning as

predicted by some accounts of consolidation (Bradfield et al. 2020)? What exactly

are the distinct contributions of lateral versus medial prefrontal areas to model-

based planning, given the diversity of pre-frontal signals involved in planning tasks

(Daw et al. 2011; Smittenaar et al. 2013; Hampton et al. 2006; Bartolo and Averbeck

2020)? And to what extent can vmPFC be considered to coordinate or signal the

outcome of computations performed elsewhere, versus constructing models itself?

These questions I will leave to future studies and PhD candidates to answer.
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A
Supplementary materials for chapter 3

This appendix includes analyses validating the model fitting procedure described in

Chapter 3. Model recovery (between competing models), parameter recovery (for

the winning tree-search model parameters), and comparison between tree-search

and model free parameters are shown below.

A.1 Model recovery

Fig.A.1 shows the results of a model recovery analysis for the competing models

capturing different strategies people could use in the goal pursuit task. The model

recovery procedure consisted of simulating data in the empirical range, on the

same schedules experienced by participants in our study. To simulate data for each

model, we used the empirical parameters from logistic regression models which were

fit separately to each participant. A soft-max function was then used to simulate

choices from the subjective value (Eq. (3.5)). Subsequently, all models were fitted

to all simulated data-sets (using the empirical model fitting procedure described

above). To account for stochasticity resulting from the soft-max function, we

repeated the simulation process 100 times for each of the 30 participants (resulting

in 3000 simulated data-sets per model). We then assessed whether each simulated

data set was best fit by its generative model. The averaged confusion matrix is
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Figure A.1: Model recoveries. Confusion matrix resulting from model recovery
procedure. Each column corresponds to a model used to simulate the dataset. Each
row corresponds to the model used to recover the dataset. Within a column, shading
corresponds to the BIC of each competing model relative to the winning model. Lower
BICs corresponding to better fits are displayed in darker shades. Numbers indicate the
rank of the model in the model comparison per column (where 1 is the winning model,
and 8 is the worst fitting model). In all cases, simulated behaviour is best fit by the
true generative model. As well as simulating and recovering each model alone, we also
confirmed that the models could be recovered with an additional parameter capturing
additional effects of goal progress (since this was the best fitting empirical model).

displayed in A.1, showing that the four final simulated models can be correctly

identified. Importantly, we find that in the empirical parameter range and across

100 repetitions, there are no cases of more simple models being confused for the

empirically best-fitting model (tree-search model).

157



A. Supplementary materials for chapter 3

Figure A.2: Parameter recovery. Mean recovered parameter (error bars indicate SD)
are plotted, with dots showing recovered parameters for individual iterations. Red dotted
line indicates the identity line (perfect recovery). Two-sided Pearsons correlations were
performed. (a) Persistence bias for each individual was defined as their indifference point
to abandonment when predicting abandonment choices using the tree search value of
abandonment. This is equal to −beta0/beta1 from the logistic regression (see Persistence
bias section in Methods). Recovered persistence biases correlated with the simulated
biases with a Pearsons correlation of 0.96 (p < 0.001). (b) Recovery of the intercept
parameter (beta0). The simulated intercepts can be recovered with a Pearsons correlation
of 0.92 (p < 0.001). (c) Recovery of the inverse temperature parameter (beta1). The
simulated inverse temperature can be recovered with a Pearsons correlation of 0.84 (p <
0.001).

A.2 Parameter recovery

Fig.A.2 shows parameter recovery for the critical parameters in the goal pursuit

tree-search model. Empirical parameters from decision data aggregated across both

sessions were used to simulate behaviour (100 iterations per participant yielding

300 simulations total). Parameters were recovered for each simulation by fitting a

logistic regression using the same procedure used for the empirical data (described

in Chapter 3, Model fitting).

A.3 Model comparison by trial type

Tree-search model predicted choices best across all trials (Fig.A.3). To determine

whether tree-search model was the best description of behaviour across both trial

types (abandonment choices and persist choices), below we plot the mean pre-

dictive accuracy split by trial type. In both cases, tree-search model predicts
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Figure A.3: Model comparison by trial type. (a) Cross validation accuracy of each
model predicting only abandonment trials. A leave one out procedure was used. For
each participant, we fit each of the mixed effects model to the choices of all other
participants (n = 29). Predictive accuracy was computed from the fixed effects on
the left out participant. Mean cross validated performance across participants is plotted,
with error bars depicting SEM (b) Cross validation accuracy of each model predicting
only persistence trials. Mean cross validated performance across participants is plotted,
with error bars depicting SEM. As for (a), the tree search model describes behaviour
best.

choices best. This suggests that rather than capturing just the total number of

abandonment choices better than other models (as shown in 3.4), it also captures

the timing of abandonment choices better. That is, on trials where participants

choose to persist, tree-search model also predicts choices to keep persisting better

than the other models.

A.4 Parameter test-retest reliability

Persistence bias and both of the sub-parameters (intercept and beta weight for

value) had good test-retest reliability (Fig.A.4). Below are plots of parameters fit

separately to the two behavioural testing sessions (300 trials of ‘scanner session’,

100 trials of ‘post-scan session’).
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Figure A.4: Test retest reliability of parameters across the two behavioural testing
sessions. Parameters were separately fitted to the decision task inside the scanner and to
the decision task outside the scanner. Two sided Pearsons correlations are reported. All
parameters show significant test retest reliability. (a) Test retest reliability for persistence
biases across the two sessions (Pearsons r = 0.69, p < 0.001). Persistence bias was defined
as the indifference point to abandonment when predicting abandonment choices using
the tree search value of abandonment. This is equal to −beta0/beta1 from the logistic
regression (see Persistence bias section in Methods). (b) Test retest reliability for the
intercept parameter (beta0) across the two sessions (Pearsons r = 0.46, p = 0.010) (c)
Test retest reliability of inverse temperature (beta1) across the two sessions (Pearsons
r = 0.38, p = 0.040).

A.5 Model free persistence metric

In this analysis (A.5), we take the total number of abandonment choices as a model-

free metric of individual persistence (whereby the fewer the number of abandonment

choices across the study, the greater the persistence). Note that this is an imperfect

measure as it will also depend on differences between the schedules completed by

each participant. Model-based persistence bias (deviation from the tree-search

model) is highly correlated with model-free abandonment. Intuitively, this shows

people who make more choices to abandon the current goal (model-free) are less

biased towards persisting (model-based). It also shows that our model-based metric

is capturing the variability in the raw data.
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Figure A.5: (a) Correlation between model-based persistence bias (from the tree-search
model) and a model-free metric of persistence (i.e. total number of abandonment choices).
(b) Correlation between goal-oriented attention in the spatial task, and total number of
abandonment choices.

A.6 Persistence bias is associated with worse per-
formance

In (Fig.A.6), we show that people with higher persistence biases perform worse at

the task. Since the tree-search model provides an approximation of optimal choices,

peoples’ tendency to over-persist beyond this model will lead to worse performance.

Across all analyses of this task, we operationalize performance in terms of how

quickly people complete goals i.e. the average number of trials to complete a goal,

where lower values correspond to better performance (faster goal completion).

A.7 Model-free replication of analyses

Below (Fig.A.7) we include analyses showing the impact of the current goal of-

fer and best alternative goal offer on behaviour. This analysis uses model free

magnitude of offers rather than tree-search value.
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Figure A.6: Persistence bias is associated with lower task performance. Performance
corresponds to the average goal completion time, in terms of trials. Lower values mean
goals are completed faster (better performance). Persistence bias captures how much
individuals persist with the goal more than the tree-search model. Statistic shows pearson
correlation.

Figure A.7: Illustration of the impact of raw offer magnitudes on reaction times and
choices, over the course of goal pursuit. Data is binned by quartile of goal progress
(proportion of the net filled).
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Figure A.8: (a) Individual fits to simulated data sets show persistence biases of
zero, demonstrating that the empirically found biases are not an inherent feature of the
schedules used. (b) Quartile fits demonstrating that we accurately recover no difference
in persistence biases across quartiles when simulating with the normative model. (c)
Effects of temptation and frustration on abandonment choices. In the normative model
simulations, we accurately recover no difference in how sensitivity to these two sources
of value develop across goal pursuit.

A.8 Simulations of tree-search behaviour

In this analysis (Fig.A.8), we perform the empirical behavioural analyses on sim-

ulated data from the normative tree-search model, demonstrating the empirical

biases are not an artefact of the testing schedules. Here, behaviour from the tree-

search model is simulated on the 30 participant schedules. In the figure below,

simulated results in (a) can be compared to empirical results Fig.3.7, simulated

results in (b) can be compared to empirical results Fig.3.8, and simulated results

in (c) can be compared to empirical results Fig.3.8.
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B.1 Whole-brain analysis with basic (model-free)
regressors

We first performed an analysis with no regressors derived from the modelling, as a

sanity check. Six regressors of interest were included in the main GLM, predicting

BOLD activity at the onset of the decision period (all modelled as stick functions).

These regressors included the three offers (current goal, best alternative, worst

alternative), the accumulated goods (contents of the net), the size of the net, and

a binary regressor capturing whether the participant chose to persist or abandon.

See Fig.B.1 for correlation between regressors.

The results of this cluster-corrected analysis can be seen in Fig.B.2. The

analysis revealed activity positively correlating with the best alternative offer and

negatively correlating with current goal offers in the dorsolateral PFC (dlPFC),

dACC, and insula. In contrast, vmPFC, medial frontal pole and striatum showed

positive correlation with the current goal offer. In addition, we found activity

negatively correlating with the best alternative offer in dorsal medial frontal pole

and in a lateral orbital frontal area (Brodmann area 47). We found no neural areas

correlating with the worst alternative, consistent with our behavioural findings that

this had no influence on reaction times or choices. Finally, we found widespread
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Figure B.1: Correlation between regressors in the model-free whole-brain analysis. Note
the events between decisions (stick regressors) are also displayed in the correlation matrix.

activity positively correlating with accumulated goods including in dorsal and ros-

tral ACC, 32pl, striatum, hippocampus, and vmPFC. No frontal regions correlated

negatively with accumulated goods.

B.2 fMRI peak activity table

Peaks of activity for the whole-brain analyses (using tree-search value). See Fig.B.4.
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Figure B.2: Model-free whole brain analysis activity. (a) Activity correlating with the
best alternative and current goal offers. (b) Activity correlating with accumulated goods
in the net (shown alongside activity for the current goal offer). (c) Activity correlating
with reaction times.

B.3 Time courses by decision outcome

Below we include illustrations of the time course of value-related activity in our

three ROIs on persistence versus abandonment trials (Fig.B.5)

B.4 Baseline vmPFC control analyses

We performed two control analyses for our finding that vmPFC baseline activity

predicted persistence biases.

First, we controlled for the location, by performing the identical analysis in

our two other neural ROIs (striatum and dACC). Fig.B.6a,b shows the relation-

ship between behavioural persistence and baseline goal-related activity in these

control ROIs. The fact that neither of the other ROIs (which also contained
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Figure B.3: Correlation between regressors in the inter-trial analysis.

value-related activity in our whole-brain analysis) predicts behaviour suggests it

is specific to vmPFC.

Second, we investigated whether decision-related activity in vmPFC correlated

with our behavioural metrics (Fig.B.6c). We quantified the decision-related activity

in vmPFC in response to goal progress using the HRF function. We took the fitted

beta coefficients for goal progress at each time-point (from stimulus onset) and

multiplied these by the double gamma HRF function, and summed the products

to produce a coefficient for each participant. Decision-related vmPFC activity did

not significantly predict behavioural persistence (Fig.B.6c).
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Figure B.4: fMRI peaks from main whole-brain analysis. Stars indicate ROI peaks.

168



B. Supplementary materials for chapter 4

Figure B.5: Illustration of neural time-courses split by trial type. The top panel
shows value-related activity in vmPFC, dACC and ventral striatum on trials where the
participant chose to persist. The bottom panel shows the same except for trials where
the participant chose to abandon the current goal for the best alternative. Speculatively,
the dACC appears to show a reversal in its value-related signal over the time-course of
abandonment trials. However, we only attained a small number of abandonment trials
in our study as the task was not designed to answer this question. This observation is
therefore speculative and more data would be needed to establish the activity profile on
these trials.
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Figure B.6: Control analyses for baseline vmPFC finding. (a,b) We found no
relationship between behaviour and baseline goal-related activity in the two other ROIs
(ACC or striatum). Statistics refer to spearman correlations. Dots show individual data
points, line shows regression. (c) We found no significant relationship between behaviour
and decision-related activity in the vmPFC ROI.
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C.1 Model fitting in patients and age-matched
controls

Fig.C.1 shows a model comparison between the four behavioural models when fit

to all lesion patient data and age-matched control data. In both the lesion patient

group and age-matched controls, the tree-search model was the best description

of behaviour in terms of predictive accuracy and when quantified as the most

frequent across participants.

C.2 Lesion maps for vmPFC patients

Fig.C.2 shows lesion maps for the four patients with damage in the vmPFC ROI

identified by the fMRI study.

C.3 Performance in voxel-wise analysis cohort

Fig.C.3 shows a comparison of performance between patients with lower persistence

identified in the voxelwise analysis, to healthy controls and other patients. This

is the same as Fig.5.3 except the fifth participant from the voxelwise analysis

is also included.
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Figure C.1: Comparison of behavioural models among all lesion patients, and among
age-matched healthy control subjects.
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Figure C.2: Lesion maps for the four patients with damage in the fMRI vmPFC ROI.
Red shows damaged area. Green shows map of area independently identified by voxel-
wise analysis (areas where damage predicts reduced persistence with the goal).
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Figure C.3: Comparison of performance in patients with damage to vmPFC area
identified in voxelwise analysis.

C.4 Reaction times in spatial attention task

Fig.C.4 shows reaction times in the spatial attention task for all our cohorts (fMRI

cohort, age-matched controls, lesion controls, and vmPFC lesion patients).

174



C. Supplementary materials for chapter 5

Figure C.4: Reaction times in spatial attention task across all cohorts. Blue dots show
mean RT for reporting the current goal stimulus location. Orange dots show mean RT for
reporting the two alternative stimuli locations. Groups correspond to the fMRI cohort
(Chapter 3 and 4), the age-matched controls in the lesion study (Chapter 5), the lesion
control patients, and the patients with damage to the vmPFC ROI. Error bars show
s.e.m. across each group.
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D.1 Two-step task instructions

Task instructions can be seen in Fig.D.1. Participants were told about contingencies

between the two steps (“Your choice of colour influences which two shapes are

displayed”), and about the basic reward structure (“There are four possible shapes,

but one shape is rewarded more often than not. The rewarded shape may change

throughout the task”). However, unlike in some studies e.g. Castro-Rodrigues et al.

(2022), they were not explicitly informed of the transition probabilities.

D.2 RL Model Fitting

A Bayesian hierarchical modelling framework was used to fit the reinforcement

learning models to behaviour, allowing us to pool data across participants to

improve individual parameter estimates. To aid model fitting in stan, we used

reparameterization to sample parameters as centred standard normal distributions

(which facilitate gradient calculations in stan), which were then transformed into

the appropriate prior distributions. Group-level parameters for means and vari-

ances were sampled from the following distributions:
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Figure D.1: Two-step task instructions.

µβmf
, µβmb

, µβstep−two , µα, µλ ∼ N (0, 1) (D.1)

µp ∼ N (0, 10) (D.2)

σ2
βmf

, σ2
βmb

, σ2
βstep−two

, σ2
α, σ2

λ, σ2
p ∼ lnN (0, 1) (D.3)

Group-level variance was defined as a lognormal distribution to ensure only

positive values.

For all parameters with the exception of p (for which the appropriate prior

distribution is a centred normal distribution) parameter transformations were used

to enforce constraints and impose uniform prior distributions across the appro-

priate ranges. Parameters were transformed using an approximation of the phi

function (i.e. normal cumulative density function), which leads to a uniform prior

over the constrained range when applying the cumulative density function to a

normal distribution:
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α = Φ(µα) (D.4)

α = Φ(µλ) (D.5)

α = Φ(µβmb
) (D.6)

α = Φ(µβmf ) (D.7)

α = Φ(µβstep−two) (D.8)

This constrains α and λ to have a uniform prior on (0,1), and constrains

βmb, βmf , and βstep−two to have a uniform prior on (0,10). The individual-level

parameters for the ith participant (pi, αi,λi,βi
mb,βi

mf ,βi
step−two) were given a normal

distribution with the mean as the prior on group mean, and variance as the prior

on group variance. The individual-level parameters were then also transformed

using the phi function to enforce constraints. For example, in the case of αi:

αi ∼ ΦN (µα, σ2
α) (D.9)

Models were coded in the Stan modelling language (Carpenter et al. 2017), and

fitted to each dataset using the Cmdstanpy interface. Datasets were fit with 4

chains, using 1000 samples per chains (warmup 500). R-hat values ≤ 1.1 indicated

convergence across all parameters. Following previous studies (Decker et al. 2016;

Potter et al. 2017), we did not include the first 9 choice trials in the analysis.

D.3 RL Model Validation

While the reinforcement learning model in this paper has been widely used in the

literature (Daw et al. 2011; Decker et al. 2016; Potter et al. 2017), this dataset

was collected using an adapted version of the two-step task with stationary rather

than drifting reward probabilities. For this reason, it was important to check that

critical parameter values could still be recovered in the new task variant, where

reward probabilities were stationary with abrupt shifts.
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Figure D.2: Parameter recoverability. The six reinforcement learning parameters were
simulated using the range reported in Decker et al. 2016. Dots show individual simulated
data sets for the 70 empirical schedules. Titles refer to the Pearsons R between simulated
and recovered parameters in each case.

Behaviour was simulated for 70 participants using the actual transitions (rare/common)

and reward probability structure experienced by the 70 participants in our dataset.

For each simulated participant, the six parameters were sampled from a normal

distribution based on the range reported in Decker et al. (2016) (mean and standard

deviation from this range). The participant data was then fit using the same

procedure described in ‘Model Fitting’. The parameters were recoverable in the

adapted version of the task (Fig.D.2).

D.4 Four-in-a-row lapse rate parameter

Fig. D.3 shows a sub-parameter of the Four-in-a-row model, namely ‘Lapse Rate’,

as a function fo group. We include this because this sub-parameter, like feature
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Figure D.3: Four-in-a-row lapse rate. Lapse rate is one of the sub-parameters in
the planning model, which corresponds to the the probability of choosing a completely
random move. This provides a control for a different source of noise to feature drop rate
(which is the probability of missing a particular feature). While lapse rate was generally
higher for lesion patients than healthy age-matched controls, the effect of lesion location
(lesion in mPFC versus sparing mPFC) was not significant.

drop rate, contributes a source of noise. Lapse rate captures the probability of

making a random move on any trial (not influenced by the value of the board state

or planning algorithm). As shown in Fig. D.3, patients with lesion damage in

general make more lapses than healthy age-matched controls (mean lapse rate for

lesion patients=0.063, std=0.015; mean lapse rate for age-matched controls=0.037,

std=0.015; two-sided Mann-Whitney U test comparing lapse rates: n1=18, n2=30,

U=500, p < 0.001). However, unlike for feature drop rate, mPFC lesion patients

did not have higher lapse rate than other lesion patients (mean lapse rate for

lesion patients=0.068, std=0.018; mean lapse rate for age-matched controls=0.057,

std=0.007; two-sided Mann-Whitney U test comparing lapse rates: n1=10, n2=8,

U=59, p = 0.101, n.s.)

D.5 Feature drop rate illustration

Below we include analyses reprinted with permission from van Opheusden et al.

(2023), showing cases of when a model with feature drop rate captures participant
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Figure D.4: Illustration of scenarios where feature drop rate captures human behaviour.
Reprinted with permission from van Opheusden et al. (2023). Feature drop rate
corresponds to the probability of dropping particular features on the board. The model
preferred move is indicated with an x, while the actual participant move is indicated
with an open circle. Red shading shows divergence between model with and without the
feature drop parameter, as quantified by Jensen-Shannon divergence.

data better than a model without this parameter (Fig.D.4). As described in van

Opheusden et al. (2023), ‘The feature drop mechanism is primarily necessary to

account for people’s tendency to overlook possibilities to immediately make four-

in-a-row, or block immediate four-in-a-row threats by the opponent.’
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